Math, asked by brainly476568942, 5 hours ago

Using identities,show that (7xy +9z)2 - (7xy - 9z)2 = 252xyz.

Answers

Answered by mathdude500
7

Appropriate Question

Using Identities, prove that

\rm :\longmapsto\: {(7xy + 9z)}^{2} -  {(7xy - 9z)}^{2} = 252xyz

\large\underline{\sf{Solution-}}

Given algebraic expression is

\rm :\longmapsto\: {(7xy + 9z)}^{2} -  {(7xy - 9z)}^{2}

We know,

\rm :\longmapsto\:\boxed{\tt{ (a + b) ^{2} - (a - b)^{2} = 4 ab}}

So, here,

 \red{\rm :\longmapsto\:a = 7xy}

 \red{\rm :\longmapsto\:b = 9z}

So, on substituting the values, we get

\rm :\longmapsto\: {(7xy + 9z)}^{2} -  {(7xy - 9z)}^{2}

\rm \:  =  \: 4 \times 7xy \times 9z

\rm \:  =  \: 4 \times 63xyz

\rm \:  =  \: 252xyz

Hence,

\rm\implies \: \boxed{\tt{ {(7xy + 9z)}^{2} -  {(7xy - 9z)}^{2} = 252xyz}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

 \red{\rm :\longmapsto\:\boxed{\tt{  {(x - y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}}}}

 \red{\rm :\longmapsto\:\boxed{\tt{  {(x  +  y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2}}}}

 \green{\rm :\longmapsto\:\boxed{\tt{  {(x  +  y)}^{3} =  {x}^{3}  + 3xy(x + y) +  {y}^{3}}}}

 \green{\rm :\longmapsto\:\boxed{\tt{  {(x  - y)}^{3} =  {x}^{3} -  3xy(x  -  y) - {y}^{3}}}}

 \blue{\rm :\longmapsto\:\boxed{\tt{  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}}

 \blue{\rm :\longmapsto\:\boxed{\tt{  {(x + y)}^{2} - {(x - y)}^{2} = 4xy}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{  {x}^{2} -  {y}^{2} = x + y)(x - y) \: }}}

Similar questions