Math, asked by shifnahaneef6656, 2 months ago

using identity 1/3×+2/3y) (1/3×-2/3y)​

Answers

Answered by AestheticSky
4

\huge\bf{\red{\underline{\underline{\mathcal{AnSwer}}}}}

\sf\dfrac{1}{9}x² - \sf\dfrac{4}{9}y²

Identity:-

\underline{\boxed{\sf (a+b)(a-b) = a²-b² }}

Solution:-

\longrightarrow \bigg(\sf \dfrac{1}{3}x   + \dfrac {2}{3}y\bigg)\bigg(\sf \dfrac{1}{3}x  - \dfrac {2}{3}y\bigg)

\longrightarrow {\bigg(\sf\dfrac{1}{3}x\bigg)}^{2}  -  {\bigg(\sf\dfrac{2}{3}y\bigg)}^{2}

\longrightarrow\sf\dfrac{1}{9}x² - \sf\dfrac{4}{9}y²

_______________________

Additional information:-

\longrightarrow (a+b)² = a²+b²+2ab

\longrightarrow (a-b)² = a²+b²-2ab

Answered by ItzShinyQueenn
2

\bf{ \underline{Given:- }}

( \frac{1}{3}x +  \frac{2}{3}  y)( \frac{1}{3} x  -  \frac{2}{3} y)

 \\

 \huge\bf{ \underline{Solution :- }}

  \sf{We  \: know \:  that, }

\bf \red{• \:  (a+b)(a-b) =  {a}^{2 }  -  {b}^{2} }

 \sf{So, }

 \bf( \frac{1}{3}x +  \frac{2}{3}  y)( \frac{1}{3} x  -  \frac{2}{3} y)

 \rightarrow \bf (\frac{1}{3} x )^{2}  - ( \frac{2}{3} y) ^{2}

 \rightarrow \bf \frac{1}{9}  {x}^{2}   -  \frac{4}{9}  {y}^{2}

 \bf \pink {Answer: \frac{1}{9}  {x}^{2}   -  \frac{4}{9}  {y}^{2} }

 \\

  \bf \purple{ \underline{Important \:  Informations:-}}

•  \: ( {a + b})^{2} =  {a}^{2}  + 2ab +  {b}^{2}

• \: ( {a - b})^{2} =  {a}^{2}  - 2ab +  {b}^{2}

• \: 2( {a}^{2} +  {b}^{2}  ) =  {(a + b)}^{2}  +  {(a - b)}^{2}

• \: 4ab =  {(a + b)}^{2}  -  {(a - b)}^{2}

• \:  {(a + b)}^{3}  =  {a}^{3}  + 2 {a}^{2} b + 2a {b}^{2}  +  {b}^{3}

• \:  {(a  -  b)}^{3}  =  {a}^{3}   -  2 {a}^{2} b + 2a {b}^{2}   -  {b}^{3}

• \:  {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}   - ab +  {b}^{2} )

• \:  {a}^{3}   - {b}^{3}  = (a  -  b)( {a}^{2}    + ab +  {b}^{2} )

Similar questions