using identity (a+b) ^3= a^3 +b^3 3ab( a+b) derive the formula a^3 +b^3 = (a+b) (a^2-ab b^2)
Answers
Answered by
41
(a + b)³ = a³ + b³ + 3ab(a + b)
Subtracting 3ab(a + b) from both sides,
=> a³ + b³ = (a + b)³ - 3ab(a + b)
We can take a + b common in RHS.
=> a³ + b³ = (a + b)((a + b)² - 3ab)
We can expand (a + b)².
=> a³ + b³ = (a + b)(a² + b² + 2ab - 3ab)
=> a³ + b³ = (a + b)(a² + b² - ab)
=> a³ + b³ = (a + b)(a² - ab + b²)
Hence the formula is derived!
Answered by
66
Proof :-
(a+b)³ = a³+b³ × 3ab(a+b)
subtract 3ab(a+b) both side
☞ a³ + b³ = (a+b)³ - 3ab(a+b)
Take (a+b) as common
☞ a³ + b³ = (a+b)((a+b)² - 3ab)
Expand (a+b)²
☞ a³ + b³ = (a + b)(a² - b² + 2ab - 3ab)
☞ a³ + b³ = (a+b)( a² - ab + 3b²)
Hence Proved
LHS = RHS
☺
Similar questions