Math, asked by sangeetayug99, 3 months ago

using identity find (3p-7q) ^2​

Answers

Answered by telex
271

Question :-

Using identity find :-

 \blue \maltese \:  \bf \red{ {(3p - 7q)}^{2} }

___________________

Solution :-

Identity Used :-

 \red \maltese \:   \boxed{\bf \orange{ {p - q}^{2} =  {p}^{2} - 2pq +  {q}^{2}   }}

To Find :-

 \blue \maltese \:  \bf \red{ {(3p - 7q)}^{2} }

Calculation :-

 \bf{ {(3p - 7q)}^{2} }

 \red  \implies  \small\bf   \blue{{(3p - 7p)}^{2}  =  {3p}^{2}  - 2 \times 3p \times 7q +  {7q}^{2} }

 \red \implies \bf \blue { {(3p - 7q)}^{2}  =  {9p}^{2} - 42pq +  {49q}^{2}  }

____________________

Final Answer :-

 \red \maltese \: \bf \purple {  {9p}^{2} - 42pq +  {49q}^{2}  }

__________________

Answered by XxHappiestWriterxX
70

_________________________

Question

Using identity find :-

 \bf \pink{{ (3p-7q) ^2}}

Solution :-

Identity Used :-

\red \maltese \: \boxed{\bf \orange{ {p - q}^{2} = {p}^{2} - 2pq + {q}^{2} }}

To Find :-

\blue \maltese \: \bf \red{ {(3p - 7q)}^{2} }

Calculation :-

\bf{ {(3p - 7q)}^{2} }

\bf \red{{(3p - 7p)}^{2} = {3p}^{2} - 2 \times 3p \times 7q + {7q}^{2} }

\bf\red{{(3p−7q) 2 =9p 2 −42pq+49q 2}}

Final Answer :-

\green\maltese \: \bf \pink { {9p}^{2} - 42pq + {49q}^{2} }

_________________________

\huge\fbox\green{Thank you :)}

Similar questions