Math, asked by annuannpura, 5 months ago

Using identity ( x+ a )(x + b) = x^2 + ( a + b )x + ab. Find
( 3x + 5 ) ( 3x – 1 )

Answers

Answered by bhavanaRS
0

Answer:

(3x)²+(5-1)3+5.-1

9x²+12-5

9x²+7

hope this helps u

Step-by-step explanation:

Answered by MissUnwanted
5

 \large \bf \sf{Algebraic \:  \:  identities:-} Algebraic identities are equalities that holds for any value of its variable. Algebraic identities are used for solving algebraic expressions and also for factorisation of polynomials.

 \large \sf \red{List \:  of  \: Indenties:- }

 \sf{(i) \: (a + b {)}^{2} =  {a}^{2}   + {b}^{2}  + 2(ab) }

 \sf{(ii) \: ( a - b{)}^{2} =  {a }^{2}  - 2(ab) +  {b}^{2}  }

 \sf{(iii) \: ( {a}^{2} -   {b}^{2})  } = ( a+ b)( a- b)

 \sf{(iv) \: (x + a)(x + b) =  {x}^{2} + (a + b)x + ab }

 \sf{(v) \: (a + b + c {)}^{2}  =  {a}^{2} +  {b}^{2}  +  {c}^{2} + 2ab + 2bc + 2 ca }

 \sf{(vi) \:  ({a} +  {b} {)}^{3} =  {a}^{3}   +  {b}^{3}  + 3ab  (a + b) }

 \sf{(vii) \: (a - b {)}^{3}  =  {a}^{3}  -  {b}^{3}  -  3ab a - b () }

 \sf{(viii)  \: {a}^{3} +  {b}^{3}   +   {c}^{3}    - 3abc= (a + b + c)( {a}^{2} +  {b}^{2} +  {c}^{2}  -ab  - bc - ca)  }

 \huge \underline \mathtt \red{Question:-}

 \sf \color{navy}{Solve:- (3x+5)(3x-1)}

 \huge \underline \mathtt \blue{Required \:  Answer:-}

\sf{Using \:  the \:  identity:-}  \\ \sf{( x+ a )(x + b) =   x^2 + ( a + b )x + ab}

So here, x= 3x , a= 5, b= 1

 \sf(3x + 5)(3x - 1)

 \sf{ =  >(3x {)}^{2}   + (5 + 1)3x + (5 \times 1)}

 \sf =  > 9 {x}^{2}  +( 6)3x + 5

 \sf{ =  >  {9x}^{2} + 18x + 6 }

 \large\sf \red{Hope \:  it \:  help s \:  you.....}

Similar questions