Physics, asked by saloarfammeo, 7 months ago

Using kirchoffs laws find the currents and voltages across all the resistors in the figure shown below

Attachments:

Answers

Answered by shadowsabers03
8

Applying Junction Law we get,

\sf{\longrightarrow I_2=I_1+I_3\quad\quad\dots(1)}

Applying Loop Law in left loop,

\sf{\longrightarrow 4I_1+2I_2=-28}

From (1),

\sf{\longrightarrow 4(I_2-I_3)+2I_2=-28}

\sf{\longrightarrow4I_3-6I_2=28\quad\quad\dots(2)}

Applying Loop Law in right loop,

\sf{\longrightarrow I_3+2I_2=-7\quad\quad\dots(3)}

Multiplying (3) by 3,

\sf{\longrightarrow 3I_3+6I_2=-21\quad\quad\dots(4)}

Adding (2) and (4),

\sf{\longrightarrow 7I_3=7}

\sf{\longrightarrow\underline{\underline{I_3=1\ A}}}

From (3),

\sf{\longrightarrow I_2=-\dfrac{I_3+7}{2}}

\sf{\longrightarrow\underline{\underline{I_2=-4\ A}}}

From (1),

\sf{\longrightarrow I_1=I_2-I_3}

\sf{\longrightarrow\underline{\underline{I_1=-5\ A}}}

[Negative signs in \sf{I_1} and \sf{I_2} show that they're in opposite direction to that depicted in the figure.]

Voltage across \sf{R_1,}

\sf{\longrightarrow V_1=I_1R_1}

\sf{\longrightarrow\underline{\underline{V_1=-20\ V}}}

Voltage across \sf{R_2,}

\sf{\longrightarrow V_2=I_2R_2}

\sf{\longrightarrow\underline{\underline{V_2=-8\ V}}}

Voltage across \sf{R_3,}

\sf{\longrightarrow V_3=I_3R_3}

\sf{\longrightarrow\underline{\underline{V_3=1\ V}}}

Similar questions