Math, asked by nishanthk041, 5 months ago

Using Laplace transform solve (D2 - 3D + 2) y = 4
given y(0) = 2 and y'(0) = 3

Answers

Answered by pulakmath007
6

SOLUTION

TO SOLVE

Using Laplace transform

(D²-3D+2)y=4 given y(0)=2 and y'(0)=3

EVALUATION

Here the given equation is

(D²-3D+2)y=4

Taking Laplace transform in both sides we get

 \displaystyle \sf{[ {s}^{2} \bar{y} - sy(0) - y'(0) ] - 3[ s \bar{y} - y(0)  ] + 2\bar{y} =  \frac{4}{s} }

 \displaystyle \sf{ \implies \: [ {s}^{2} \bar{y} - 2s - 3 ] - 3[ s \bar{y} - 2 ] + 2\bar{y} =  \frac{4}{s} }

 \displaystyle \sf{ \implies \:  ({s}^{2}  - 3s + 2)\bar{y} - 2s - 3  + 6=  \frac{4}{s} }

 \displaystyle \sf{ \implies \:  ({s}^{2}  - 3s + 2)\bar{y} =  \frac{4}{s}  + 2s - 3}

 \displaystyle \sf{ \implies \:  ({s}^{2}  - 3s + 2)\bar{y} =  \frac{4 + 2 {s}^{2} - 3s }{s} }

 \displaystyle \sf{ \implies \:  ({s}^{2}  - 3s + 2)\bar{y} =  \frac{2( {s}^{2} - 3s + 2) + 3s }{s} }

 \displaystyle \sf{ \implies \:  \bar{y} =  \frac{2( {s}^{2} - 3s + 2) + 3s }{s({s}^{2}  - 3s + 2)} }

 \displaystyle \sf{ \implies \:  \bar{y} =   \frac{2}{s} +  \frac{3 }{({s}^{2}  - 3s + 2)} }

 \displaystyle \sf{ \implies \:  \bar{y} =   \frac{2}{s} +  \frac{3 }{(s - 1)(s - 2)} }

 \displaystyle \sf{ \implies \:  \bar{y} =   \frac{2}{s} +  \frac{3[(s - 1) - (s - 2)] }{(s - 1)(s - 2)} }

 \displaystyle \sf{ \implies \:  \bar{y} =   \frac{2}{s} +  \frac{3}{s - 2}  -  \frac{3}{s - 1}  }

On inversion we get

 \displaystyle \sf{ \implies \:  y = {L}^{ - 1} \bigg( \frac{2}{s} \bigg) +   {L}^{ - 1} \bigg(\frac{3}{s - 2}\bigg)   -   {L}^{ - 1} \bigg(\frac{3}{s - 1}\bigg)   }

 \displaystyle \sf{ \implies \:  y = 2{L}^{ - 1} \bigg( \frac{1}{s} \bigg) + 3  {L}^{ - 1} \bigg(\frac{1}{s - 2}\bigg)   -  3 {L}^{ - 1} \bigg(\frac{1}{s - 1}\bigg)   }

 \displaystyle \sf{ \implies \:  y = 2 + 3 {e}^{2t}  - 3 {e}^{t} }

Which is the required solution

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

2. Prove that div grad r^n = n(n+1) r^n-2

https://brainly.in/question/24594228

Answered by taufiqb0403
0

Step-by-step explanation:

solve by laplace transform of d^2/dx^2+4dy/dx+13=2e-t in brainly

Similar questions