Math, asked by karnikakataria, 6 months ago

Using laws and exponents, simplify and write the answer in exponential form? Thank you ​

Attachments:

Answers

Answered by MagicalBeast
6

Given :

 \dfrac{ {3}^{2} \times  {7}^{8} \times  {13}^{6}   }{ {21}^{2}  \times  {91}^{3} }

To find : Simplified form ( in exponential)

Identity used :

 \sf \bullet \:  \dfrac{ {a}^{m} }{ {a}^{n} }  \:  =  \:  {a}^{m -n}  \\  \\  \sf \bullet \:  {(a \times b)}^{m}  =  {a}^{m}  \times  {b}^{m}

Solution :

we can write ,

  • 21 = 3×7
  • 91 = 7×13

 \implies \sf \:  \dfrac{ {3}^{2} \times  {7}^{8} \times  {13}^{6}   }{ {21}^{2}  \times  {91}^{3} }   \\  \\  \implies \sf \:  \dfrac{ {3}^{2} \times  {7}^{8} \times  {13}^{6}   }{ {(3 \times 7)}^{2}  \times  {(7 \times 13)}^{3} }  \\  \\ \implies \sf \:  \dfrac{ {3}^{2} \times  {7}^{8} \times  {13}^{6}   }{ {3 }^{2}  \times  {7}^{2}  \times   {7}^{3}   \times { 13}^{3} } \\  \\  \implies \sf \:  \dfrac{ {3}^{2} }{ {3}^{2} }  \times  \dfrac{ {7}^{8} }{ {7}^{2}  \times  {7}^{3} }  \times  \dfrac{ {13}^{6} }{ {13}^{3} }  \\  \\  \implies \sf \: 1 \times  {7}^{(8 - 2 - 3)}  \times  {13}^{(6 - 3)}  \\  \\  \implies \:  {7}^{3}  \times  {13}^{3}

ANSWER : 7³×13³

Similar questions