Math, asked by Anonymous, 3 months ago

Using laws of exponents, simplify and write the answer in exponential form -

(5 {}^{2} ) {}^{3}   \div 5 {}^{3}

No spam or else 20 answer will be reported

Proper answer needed and with the steps

Report my earlier question, it is wrong ​

Answers

Answered by Anonymous
3

Answer:

the bracketed ones are the formulas used ...

Attachments:
Answered by Anonymous
8

AnswEr-:

  • \boxed{\longrightarrow{\mathrm{ Answer \:-:\:5^{3}\:or\:125}}}

Explanation-:

\sf{Given -:}

  • Simplify using exponential law -:
  • \mathrm{(5^{2} )^{3} \div 5^{3} }

\sf{To\:do -:}

  • Simplifying using exponential law .

\mathrm{\dag{Solution \:of\:Question \: -:}}

  • \star{\longrightarrow{\mathrm{(5^{2} )^{3} \div 5^{3}}}}

  • \dag{\longrightarrow{\mathrm{ Exponential\:Law\:= (a^{m})^{n}\: = a^{mn} }}}

  • \star{\longrightarrow{\mathrm{(5^{2} )^{3} \div 5^{3}}}}

  • \star{\longrightarrow{\mathrm{(5^{2\times 3}  \div 5^{3}}}}

  • \star{\longrightarrow{\mathrm{(5^{6}  \div 5^{3}}}}

  • \dag{\longrightarrow{\mathrm{ Exponential\:Law\:= a^{m} \div a^{n}\: = a^{m-n} }}}

  • \star{\longrightarrow{\mathrm{(5^{6}  \div 5^{3}}}}

  • \star{\longrightarrow{\mathrm{(5^{6-3}}}}

  • \star{\longrightarrow{\mathrm{ 5^{3}}}}

  • \dag{\longrightarrow{\mathrm{ 5^{3} = 125 }}}

  • \star{\longrightarrow{\mathrm{ 5^{3}\:or\:125}}}

\sf{Hence -:}

  • \boxed{\longrightarrow{\mathrm{ Answer \:-:\:5^{3}\:or\:125}}}

_______________________________

♡ More To know-:

  • Law's of exponents :

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

___________________________

Similar questions