Math, asked by adicr, 6 hours ago

Using long division method, find the remainder when the polynomial p(x) x³-2x²-x+2 divided by x+1​

Answers

Answered by Itzintellectual
2

Step-by-step explanation:

\tt\red{ QUESTION}\tt\blue{::}

Using long division method, find the remainder when the polynomial p(x) x³-2x²-x+2 divided by x+1

\tt\red{ ANSWER}\tt\blue{::}

Polynomials::

Find remainder when x³-2x³+x-2 is divided by (x-2)

Solution:-

Here, f(x)= x³-2x³+x-2 is divided by the linear polynomial (x-2)

At first we will find out the zero of the polynomial (x-2)

=> x - 2 = 0

=> x = 2

From the Remainder Theoreom, we know that when f(x)= x³-2x³+x-2 is divided by (x-2) gives the remainder f(2).

Therefore, The required remainder= f(2)

=> x³-2x³+x-2

=> 2³ - 2. (2)³ + 2 - 2

=> 8 - 2. 8 + 2 - 2

=> 8 - 16 + 2 - 2

=> -8

Hence, The remainder is -8

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

 \purple{\rm :\longmapsto\:Dividend =  {x}^{3} -  {2x}^{2} - x + 2}

and

 \purple{\rm :\longmapsto\:Divisor = x + 1}

So, By using Long Division Method, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} - 3x + 2\:\:}}}\\ {\underline{\sf{x  + 1}}}& {\sf{\: {x}^{3}  -  {2x}^{2} - x + 2 \:\:}} \\{\sf{}}& \underline{\sf{- {x}^{3} -  {x}^{2} \:  \: \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 3{x}^{2} - x +2  \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  3{x}^{2} + 3x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2x  + 2 \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: - 2x - 2\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

So,

\bf\implies \:Remainder = 0

Verification

 \purple{\rm :\longmapsto\:Dividend =  {x}^{3} -  {2x}^{2} - x + 2}

 \purple{\rm :\longmapsto\:Divisor = x + 1}

 \purple{\rm :\longmapsto\:Remainder = 0}

 \purple{\rm :\longmapsto\:Quotient =  {x}^{2}  - 3x + 2}

Now, Consider

\rm :\longmapsto\:Divisor \times Quotient + Remainder

\rm \:  =  \: (x + 1)( {x}^{2} - 3x + 2) + 0

\rm \:  =  \:  {x}^{3} -  {3x}^{2} + 2x +  {x}^{2} - 3x + 2

\rm \:  =  \:  {x}^{3} -  {2x}^{2} - x + 2

\rm \:  =  \: Dividend

Hence, Verified

Similar questions