Math, asked by ayesha78622, 11 months ago

Using long division method, show that (x–3) is a factor of 6+x–4x^2
+x^3
.​

Answers

Answered by abhinavsingh02
11

Step-by-step explanation:

PLS MARK IT AS BRAINLIEST

Attachments:
Answered by ashishks1912
10

By long division method the given polynomial can be simplified to \frac{x^3-4x^2+x+6}{x-3}=x^2-x-2

Step-by-step explanation:

Given that x-3 is a factor of the polynomial 6+x-4x^2+x^3

Rewritting the given polynomial as x^3-4x^2+x+6

To Solve the given polynomial by long division method :

        x^2-x-2

       _______________

x-3  )x^3-4x^2+x+6

        x^3-3x^2

      (-)__(+)___________

              -x^2+x

              -x^2+3x

      ____(+)__(-)___________

                      -2x+6

                       -2x+6

    _______ (+)__(-)_________

                            0

   ______________________

Hence \frac{x^3-4x^2+x+6}{x-3}=x^2-x-2

Similar questions