Math, asked by fishblipblop, 11 months ago

Using mathematical induction, Prove
(1+x)^n\geq1+nx for all n\geq1

Answers

Answered by shadowsabers03
0

Let,

\longrightarrow\sf{P(n):(1+x)^n\geq1+nx,\ \forall n\geq1}

[Note: \sf{P(n)} is assumed to hold true for \sf{x\geq0.}]

Consider \sf{P(1).}

\longrightarrow\sf{(1+x)^n=1+x}

Here \sf{P(1)} is true but it only shows that \sf{(1+x)^n=1+nx.}

So consider \sf{P(2).}

\longrightarrow\sf{(1+x)^2=1+2x+x^2}

Since \sf{x^2\geq0,}

\longrightarrow\sf{(1+x)^2\geq1+2x}

Thus \sf{P(n)} is true for \sf{n=1} and \sf{n=2.}

So, assume \sf{P(k)} is true.

\longrightarrow\sf{P(k):(1+x)^k\geq1+kx,\ \forall k\geq1}

Let,

\longrightarrow\sf{(1+x)^k=1+kx+m,\ m\geq0}

Then, consider \sf{P(k+1).}

\longrightarrow\sf{P(k+1):(1+x)^{k+1}\geq1+(k+1)x,\forall k\geq1}

Let's check whether it's true.

\longrightarrow\sf{(1+x)^{k+1}=(1+x)(1+x)^k}

\longrightarrow\sf{(1+x)^{k+1}=(1+x)(1+kx+m)}

\longrightarrow\sf{(1+x)^{k+1}=1+kx+m+x+kx^2+mx}

\longrightarrow\sf{(1+x)^{k+1}=1+(k+1)x+kx^2+mx+m\quad\quad\dots(1)}

But since \sf{k,\ x,\ m\geq0}

\longrightarrow\sf{kx^2+mx+m\geq0}

Then (1) implies,

\longrightarrow\sf{(1+x)^{k+1}\geq1+(k+1)x}

Therefore \sf{P(k+1)} is true whenever \sf{P(k)} is true.

Hence \sf{P(n)} holds true \sf{\forall n\geq1.}

Similar questions