Using mathematical induction prove that for any natural number n, 4^2n >15n
Answers
Answered by
0
Answer:
4²ⁿ > 15n
Step-by-step explanation:
Using mathematical induction prove that for any natural number n, 4^2n >15n
4²ⁿ > 15n
for n = 1
4² > 15
Which hold trues
for n = 2
4⁴ > 15 * 2
=> 256 > 30
let say for n = a it hold true
4²ᵃ > 15a
then
for a + 1
4²⁽ᵃ⁺¹⁾ = 4² * 4²ᵃ = 16 * 4²ᵃ
> 16 * 15a
> 15 * 15a + 15a
> 15* (15a -1) + 15 + 15a
> 15(a + 1) + 15* (15a -1)
> 15(a + 1)
Hence holds true
Similar questions