using number line, how do you compare a.two negative integer b. two positive integer c. one positive integer and negative integer
Answers
Step-by-step explanation:
a. always in a number line the number which is nearer to 0 is greater
b. always in a number line the number which is far from 0 is greater
c. always in a number line positive integer is greater
Answer:
Answer:
Given :-
Sides of triangular plot = 2:3:4
Perimeter = 450 m
To Find :-
Area
Solution :-
Let sides be x
Firstly let's find all sides of triangle
As we know that Perimeter is the sum of all sides
\sf \: 2x + 3x + 4x = 4502x+3x+4x=450
\sf \: 9x = 4509x=450
\sf \: x = \dfrac{450}{9}x=
9
450
\sf \: x = 50x=50
Let's find angles
\sf \: 2(50) = 1002(50)=100
\sf3(50) = 1503(50)=150
\sf \: 4(50) = 2004(50)=200
Now,
Let's find its semiperimeter
\sf \: s = \dfrac{a + b + c}{2}s=
2
a+b+c
\sf \: s = \dfrac{100 + 150 + 200}{2}s=
2
100+150+200
\sf \: s = \dfrac{450}{2} = 225s=
2
450
=225
Now,
Let's find Area by herons formula.
\huge \bf \green{\sqrt{s(s - a)(s - b)(s - c)} }
s(s−a)(s−b)(s−c)
\tt \mapsto \sqrt{225(225- 100)(225 - 150)(225 - 200)}↦
225(225−100)(225−150)(225−200)
\tt \mapsto \: \sqrt{225\times 125\times 75 \times 25}↦
225×125×75×25
\tt \mapsto \: \sqrt{(15 \times 15) (25 \times 5)(25 \times 3)(5 \times 5)}↦
(15×15)(25×5)(25×3)(5×5)
\tt\sqrt{15 {}^{2} \times 5{}^{2} \times 5 \times {5}^{2} \times }
15
2
×5
2
×5×5
2
×
\tt \: 1875× \sqrt{15}1875×
15
\huge \tt \mapsto 1875× \sqrt{15}{m}^{2}↦1875×
15
m
2
Diagram :-
\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}
Step-by-step explanation:
Answer:
Given :-
Sides of triangular plot = 2:3:4
Perimeter = 450 m
To Find :-
Area
Solution :-
Let sides be x
Firstly let's find all sides of triangle
As we know that Perimeter is the sum of all sides
\sf \: 2x + 3x + 4x = 4502x+3x+4x=450
\sf \: 9x = 4509x=450
\sf \: x = \dfrac{450}{9}x=
9
450
\sf \: x = 50x=50
Let's find angles
\sf \: 2(50) = 1002(50)=100
\sf3(50) = 1503(50)=150
\sf \: 4(50) = 2004(50)=200
Now,
Let's find its semiperimeter
\sf \: s = \dfrac{a + b + c}{2}s=
2
a+b+c
\sf \: s = \dfrac{100 + 150 + 200}{2}s=
2
100+150+200
\sf \: s = \dfrac{450}{2} = 225s=
2
450
=225
Now,
Let's find Area by herons formula.
\huge \bf \green{\sqrt{s(s - a)(s - b)(s - c)} }
s(s−a)(s−b)(s−c)
\tt \mapsto \sqrt{225(225- 100)(225 - 150)(225 - 200)}↦
225(225−100)(225−150)(225−200)
\tt \mapsto \: \sqrt{225\times 125\times 75 \times 25}↦
225×125×75×25
\tt \mapsto \: \sqrt{(15 \times 15) (25 \times 5)(25 \times 3)(5 \times 5)}↦
(15×15)(25×5)(25×3)(5×5)
\tt\sqrt{15 {}^{2} \times 5{}^{2} \times 5 \times {5}^{2} \times }
15
2
×5
2
×5×5
2
×
\tt \: 1875× \sqrt{15}1875×
15
\huge \tt \mapsto 1875× \sqrt{15}{m}^{2}↦1875×
15
m
2
Diagram :-
\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}