Using properties of determinant show that
|a+b a b|
| a a+c c |=4abc
| b c b+c|
Answers
Answered by
13
Answer:
4abc
Step-by-step explanation:
a+b a b
a a+c c
b c b+c
(a+b)( (a+c)(b+c) - c*c) - a*(a(b+c) - b*c) + b (a*c - b(a + c))
= (a + b) ( ab + ac + bc + c² - c²) - a(ab + ac - bc) + b(ac - ab - bc)
= (a + b) ( ab + ac + bc) - a(ab + ac - bc) + b(ac - ab - bc)
= a( ab + ac + bc) + b( ab + ac + bc) - a(ab + ac - bc) + b(ac - ab - bc)
= a( ab + ac + bc - (ab + ac - bc) + b (ab + ac + bc + ac - ab - bc)
= a( 2bc) + b(2ac)
= 2abc + 2abc
= 4abc
Answered by
2
Answer:
This Answer is confirmed I can note it
Similar questions
History,
6 months ago
Biology,
6 months ago
India Languages,
6 months ago
Business Studies,
1 year ago
Science,
1 year ago
Science,
1 year ago
Math,
1 year ago