Using properties of determinants, prove that : [a2+2a2a+112a+1a+21331]=(a−1)3.
Answers
Answered by
0
+b)2 {1 x[ (b2-2ab)(b2-a2) - (a2-2ab )(2ab-a2) ] } ⇒ (a+b)2 { b4-a2b2 -2ab3+2a3b + a4+4a2 b2 - 4a3 b } ⇒ (a+b)2 { a4 + b4+3a2 b2 -2ab3-2a3b } ⇒ (a+b)2 ...
Similar questions