Math, asked by BIGBRAINBOOV, 3 months ago

using properties of proportion, solve for a √7a²+1 +2a/ √7a²+1 - 2a = 7

Answers

Answered by Anonymous
3

\sf{\underline\pink{Question:-}}

solve for a √7a²+1 +2a/ √7a²+1 - 2a = 7

\huge{\underbrace{\mathbb{Answer}}}

don't know

Answered by xospheregaming
7

Answer:

\pm \text{ }3

Step-by-step explanation:

{\sqrt{7a^{2} + 1 } + 2a \over \sqrt{7a^{2} + 1 } - 2a} = 7

\rightarrow {\sqrt{7a^{2} + 1 } + 2a \over \sqrt{7a^{2} + 1 } - 2a} = {7\over1}

Applying componendo and dividendo...

\rightarrow {{\sqrt{7a^{2} + 1 } + 2a + (\sqrt{7a^{2} - 1 } + 2a )\over{\sqrt{7a^{2} + 1 } + 2a - (\sqrt{7a^{2} + 1 } - 2a})} = {7+1\over7-1}

\rightarrow {{2(\sqrt{7a^{2} + 1 })\over{4a}} = {8\over6}

\rightarrow {{(\sqrt{7a^{2} + 1 })\over{2a}} = {4\over3}

Squaring both sides..

\rightarrow {7a^2 + 1\over{4a^2}} = {16\over9}

Cross multiplication...

\rightarrow {63a^2 + 9} = {64a^2}\\\rightarrow 9 = a^2\\\rightarrow a = \pm\text{ }3

Similar questions