Math, asked by khushmeetsandhu16, 1 month ago

Using properties of proportions ,solve for x given that x is positive:- *

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{2x +  \sqrt{ {4x}^{2}  - 1} }{2x -  \sqrt{ {4x}^{2} - 1 } }  = \dfrac{4}{1}

We know,

Componendo and Dividendo

\red{\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d}  \: then}

\red{\rm :\longmapsto\:\dfrac{a + b}{a - b}  = \dfrac{c + d}{c - d}}

So, on applying Componendo and Dividendo in equation, we get

\rm :\longmapsto\:\dfrac{2x +  \sqrt{ {4x}^{2}  - 1} + 2x -  \sqrt{ {4x}^{2} - 1 }}{2x + \sqrt{ {4x}^{2} - 1}  - 2x +  \sqrt{ {4x}^{2}  - 1}}  = \dfrac{4 + 1}{4 - 1}

\rm :\longmapsto\:\dfrac{4x}{2 \sqrt{ {4x}^{2}  - 1} }  = \dfrac{5}{3}

\rm :\longmapsto\:\dfrac{2x}{ \sqrt{ {4x}^{2}  - 1} }  = \dfrac{5}{3}

On squaring both sides, we get

\rm :\longmapsto\:\dfrac{ {4x}^{2} }{{4x}^{2}  - 1}  = \dfrac{25}{9}

\rm :\longmapsto\:36 {x}^{2} = 25( {4x}^{2} - 1)

\rm :\longmapsto\:36 {x}^{2} =  {100x}^{2} -25

\rm :\longmapsto\:36 {x}^{2} -  {100x}^{2}  = -25

\rm :\longmapsto\: -  {64x}^{2}  = -25

\rm :\longmapsto\: {64x}^{2}  = 25

\rm :\longmapsto\: {x}^{2} = \dfrac{25}{64}

\rm :\implies\:x =  \:  \pm \: \dfrac{5}{8}

But it is given that x > 0

\bf\implies \:x = \dfrac{5}{8}

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf \: Option \: (a) \: is \: correct}}

Additional Information :-

\red{\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d}  \: then}

\red{\rm :\longmapsto\: \: \dfrac{a}{c}  = \dfrac{b}{d}  \: is \: called \: alternendo}

\red{\rm :\longmapsto\: \: \dfrac{b}{a}  = \dfrac{d}{c}  \: is \: called \: invertendo}

\red{\rm :\longmapsto\: \: \dfrac{a + b}{b}  = \dfrac{c + d}{d}  \: is \: called \: componendo}

\red{\rm :\longmapsto\: \: \dfrac{a  -  b}{b}  = \dfrac{c  -  d}{d}  \: is \: called \: dividendo}

Similar questions