Math, asked by Anonymous, 3 days ago

Using properties of sets, show that:

A \cap(A \cup B) = B

Answers

Answered by meghna421124
6

Answer:

LHS = A ∩ (A ∪ B)

Use distribution property,

e.g., P\cap(Q\cup R)=(P\cap Q)\cup(P\cap R)P∩(Q∪R)=(P∩Q)∪(P∩R)

= (A ∩ A) ∪ (A ∩ B)

Use relation A ∩ A = A

= (A ∩ A) ∪ (A ∩ B)

= A ∪ (A ∩ B)

= A = RHS

Hence, A ∩ (A ∪ B) = A

Step-by-step explanation:

Mark me brainlist please

Answered by Missincridedible
7

A ∩ (A ∪ B) = A

L.H.S

⇒ A ∩ (A ∪ B)

Using distribution property we get

⇒ (A ∩ A) ∪ (A ∩ B)

Use relation A ∩ A = A

⇒ (A ∩ A) ∪ (A ∩ B)

⇒ A ∪ (A ∩ B)

⇒ A

R.H.S

Hence, A ∩ (A ∪ B) = A

Similar questions