Math, asked by aaryanapatadiya, 7 months ago

using Pythagoras theorem prove that 1+cot²theta = cosec² theta​

Answers

Answered by nirman95
6

To prove:

1+cot²theta = cosec² theta using Pythagora's Theorem.

Proof:

Let us consider a ∆ABC such that AB = a and BC = b and \angle ABC = 90°.

Now, as per Pythagora's Theorem:

 \therefore \:  {(AB)}^{2}  +  {(BC)}^{2}  =  {(AC)}^{2}

 =  > \:  {a}^{2}  +  {b}^{2}  =  {(AC)}^{2}

 =  > \:    AC  =  \sqrt{ {a}^{2}  +  {b}^{2} }

Now, LHS:

 \therefore \: 1 +  { \cot}^{2} ( \theta)

 =   \: 1 +    { (\dfrac{base}{altitude}) }^{2}

 =  \: 1 +    { (\dfrac{b}{a}) }^{2}

 =   \: 1 +     \dfrac{ {b}^{2} }{ {a}^{2} }

 =   \:   \dfrac{  {a}^{2}  + {b}^{2} }{ {a}^{2} }

Now , RHS:

 \therefore \:  { \csc }^{2} ( \theta)

 =  \:  { (\dfrac{hypotenuse}{altitude}) }^{2}

 =  \:  {  \bigg(\dfrac{ \sqrt{ {a}^{2} +  {b}^{2}  } }{a} \bigg) }^{2}

 =  \:    \dfrac{ {(\sqrt{ {a}^{2} +  {b}^{2}  })}^{2}  }{ {a}^{2} }

 =  \:    \dfrac{  {a}^{2}  +  {b}^{2}  }{ {a}^{2} }

So, LHS = RHS , hence proved.

Attachments:
Similar questions