Math, asked by ksugandh890, 1 month ago

Using quadratic formula find the solutions of the equation x² +12x + 35 = 0.​

Answers

Answered by mathdude500
14

\large\underline{\bf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {x}^{2}  + 12x + 35 = 0

 \red{\rm :\longmapsto\:\sf \: On \: comparing \: with \:  {ax}^{2} + bx + c \: = 0}

we get ,

 \red{\rm :\longmapsto\:a = 1 \:  \: } \\  \red{\rm :\longmapsto\:b = 12} \\  \red{\rm :\longmapsto\:c = 35}

Let first find Discriminant, D

 \red{\rm :\longmapsto\:Discriminant, D =  {b}^{2} - 4ac}

 \rm \:  \:  =  \:  \:  {(12)}^{2} - 4 \times 35 \times 1

 \rm \:  \:  =  \:  \: 144 - 140

 \rm \:  \:  =  \:  \: 40

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{\bf\implies \:Discriminant, D = 4}

Solution using quadratic formula is

 \blue{\bf :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ D } }{2a} }

\rm :\longmapsto\:x = \dfrac{ - 12 \:  \pm \:  \sqrt{4} }{2 \times 1}

\rm :\longmapsto\:x = \dfrac{ - 12 \:  \pm \: 2}{2}

\rm :\longmapsto\:x = \dfrac{ - 12 \: +  \: 2}{2}  \:  \: or \:  \: \dfrac{ - 12 - 2}{2}

\rm :\longmapsto\:x = \dfrac{ - 10}{2}  \:  \: or \:  \: \dfrac{ - 14}{2}

\bf\implies \:x =  - 5 \:  \:  \: or \:  \:  \: x =  - 7

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Similar questions