Math, asked by abhishek883, 10 months ago

using quadratic formula solve for the following
a^2b^2x^2-(4b^4-3a^4)x -12a^2b^2=0

Answers

Answered by fab13
2

Answer:

 {a}^{2}  {b}^{2} \times  x {}^{2}  -(4b{}^{4}  - 3a {}^{4} )x - 12 {a}^{2} {b}^{2}  = 0 \\  =  >  x =  \frac{4 {b}^{4} - 3 {a}^{4} \pm \sqrt{(4 {b}^{4} - 3 {a}^{4} ) {}^{2}  - 4 \times  {a}^{2}  {b}^{2}  \times - 12 {a}^{2}b {}^{2}    }  }{2 \times  {a}^{2} {b}^{2}  }  \\  =  > x =  \frac{4 {b}^{4}  - 3 {a}^{4} \pm \sqrt{16 {b}^{8}  - 24 {a}^{4} {b}^{4}   + 9 {a}^{8} + 48 {a}^{4} {b}^{4}   }   }{2 {a}^{2} {b}^{2}  }  \\  =  > x =  \frac{4b {}^{4} - 3a {}^{4}  \pm \sqrt{9 {a}^{8}  + 24a {}^{4}  {b}^{4} + 16 {b}^{8}  }  }{2 {a}^{2} {b}^{2}  }  \\  =  > x =  \frac{4 {b}^{4} - 3 {a}^{4}  \pm \sqrt{(3 {a}^{4} ) {}^{2}  + 2 \times 3a {}^{4} \times 4 {b}^{4} + (4 {b}^{4})   {}^{2}  }  }{2 {a}^{2}  {b}^{2} }  \\  =  > x =  \frac{4 {b}^{4}  - 3 {a}^{4} \pm \ \sqrt{(3 {a}^{4} + 4b {}^{4}) {}^{ {}^{2} }   }   }{2 {a}^{2}b {}^{2}  }  \\  =  > x =  \frac{4 {b}^{4} - 3 {a}^{4}   \pm(3 {a}^{4}  + 4 {b}^{4} )}{2 {a}^{2}  {b}^{2} }

either,

x =  \frac{4 {b}^{4} - 3 {a}^{4}   + 3 {a}^{4} + 4 {b}^{4}   }{2 {a}^{2}  {b}^{2} }  \\  =  > x =  \frac{8 {b}^{4} }{2 {a}^{2}b {}^{2}  }  \\  =  > x =  \frac{4 {b}^{2} }{ {a}^{2} }  \\

or,,,,

x =  \frac{4 {b}^{4} - 3 {a}^{4}  - 3 {a}^{4} - 4b {}^{4}   }{2 {a}^{2} {b}^{2}  }  \\  =  > x =  \frac{ - 6 {a}^{4} }{2 {a}^{2}  {b}^{2} }  \\  =  > x =  \frac{ -  3{a}^{2} }{ {b}^{2} }

so,

x =  \frac{4 {b}^{2} }{ {a}^{2} } or \frac{ - 3 {a}^{2} }{ {b}^{2} }

Similar questions