Math, asked by tripuraratankishore, 6 months ago

using quadratic formula solve the equation :- 2x square-2 root over 2 X +1 = 0

Answers

Answered by moredarshan1765
1

Answer:

8×-8 + 8 × 1 =0

Step-by-step explanation:

hope it helps you

Answered by SugarCrash
74

Answer :

\large \implies \dfrac{\sqrt{2}}{2}

Solution :

Question :

using quadratic formula solve the equation :-

  • 2x² - 2√2x -1 = 0

\LARGE\color{blue} \mathfrak{Quadratic\: Formula }:

\:\:\: \:\red\bigstar\boxed{\tt x = \dfrac{-b± \sqrt{b^2-4ac}}{2a}}

Here,

  • a = 2
  • b = -2√2
  • c = 1

\\ \large\underline{ \mathfrak{Substituting \: the \: values}}

 \leadsto  x = \dfrac{-(-2\sqrt{2}) ± \sqrt{(-2\sqrt{2})^2-4\times 2\times 1}}{2\times 2} \\ \\ \implies  x = \dfrac{2\sqrt{2} ± \sqrt{ 8 - 8}}{4}  \\ \\ \implies x = \dfrac{2\sqrt{2} ± 0 }{4} \\ \\ \implies x =   \dfrac{\cancel{2}\sqrt{2} }{^2\cancel{4}} \\\\\implies \underline{\boxed{\pink{x = \dfrac{\sqrt{2}}{2}}}}

Hence,

Value of x is 2√2.

━━━━━━━━━━

☞ Verification :

Quadratic equation :

  • 2x² - 2√2x -1 = 0

Putting value of x

\sf 2(\dfrac{\sqrt{2}}{2})^2 - 2\sqrt{2}(\dfrac{\sqrt{2}}{2}) - 1 = 0 \\ \\ \implies 2(\frac{\cancel{2}}{^2\cancel{4}}) - \cancel{2}\sqrt{2}(\dfrac{\sqrt{2}}{\cancel{2}}) + 1 = 0 \\ \\ \implies \dfrac{2}{2} - \sqrt{2} \times \sqrt{2} + 1 \\ \\ \implies 1 -2 + 1 = 0 \\ \\ \implies 2-2 = 0 \\ \\ \implies 0 = 0 \\

L.H.S = R.H.S

Hence verified !

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 

Attachments:
Similar questions