Math, asked by Einstein4189, 1 year ago

Using quadratic formula, solve the following equation for x:

abx²+ (b²- ac) x - bc = 0


Answer fast I need it For exam.

Answers

Answered by Noah11
35

\boxed{\bold{\large{Answer:}}}

\textsf{We\:have, \: $abx^2+ (b^2$- ac) x - bc = 0}

\textsf{Here,\: A\:=\:ab,\:B\:=$b^2\:-\:ac, \:C\:=\:-ac}

\textsf{Now,}

x = \frac{ -B \pm \sqrt{ {B}^{2} - 4 AC} }{2 A} \\ \\ \implies \: x = \frac{ - ( {b}^{2} - ac) \pm \sqrt{( {b}^{2} - ac {)}^{2} } - 4(ab) ( - bc) }{2ab} \\ \\ \implies \: x \: = \frac{ - ( {b}^{2} - ac) \pm \sqrt{( {b}^{2} - ac {) }^{2} +4a {b}^{2}c } }{2ab} \\ \\ \implies \: x = \frac{ - ( {b}^{2} - ac) \pm \sqrt{ {b}^{4} - 2a {b}^{2}c + {a}^{2} {c}^{2} + 4a {b}^{2}c } }{2ab} \\ \\ \implies \: x = \frac{ - ( {b}^{2} - ac) \pm \sqrt{( {b}^{2} + ac {)}^{2} } }{2ab} \: \: \: \implies \: x = \frac{ - ( {b}^{2} - ac) \pm( {b}^{2} + ac) }{2ab} \\ \\ \implies \: x = \frac{ - ( {b}^{2} - ac) + ( {b}^{2} + ac) }{2ab} \: \: \: \: or \: \: \: \: x = \frac{ - ( {b}^{2} -ac) - ( {b}^{2} + ac) }{2ab} \\ \\ \implies \: x = \frac{2ac}{2ab} \: \: \: \: \: \: or \: \: \: \: x = \frac{ - 2 {b}^{2} }{2ab} \: \: \: \: \: \implies \: x = \frac{c}{b} \: \: \: \: \: \: or \frac{ - b}{a}


jaasimjr: pls help!!!!
jaasimjr: the first question yaar!! pls... ans!!!
yashula: Hii @Noah11
Anonymous: sus @jaasimjr manyakmisin
Anonymous: benim ingilizcem iyi değil ve özür dilerim manyak misin dediğim icin
jaasimjr: Cant understand
jaasimjr: son zamanlarda sorduğum sorumu cevaplayabilir misiniz
Anonymous: tamam
Anonymous: Your content of answer is not showing then how it is verified
Noah11: Inbox
Answered by BoyBrainly
1

  \fbox{ \fbox{\bold{ \large{ \:  \: Given \:  \:  \: }}}}

 \to abx² + (b² - ac)x - bc = 0

  \fbox{ \fbox{\bold{ \large{ \:  \: To  \: Find \:  \: }}}}

 \to x = ?

 \fbox{  \fbox{\large{ \bold{ \:  \: Solution \:  \:  \: }}}}

 \bold{ \underline{We \:  know \:  that \:  ,  \:  \: }}

 \bold{ x = \frac{ - b \: ±  \: \sqrt{ {b}^{2}  \: -  \: 4ac  \:  \: }  }{2a} } \\  \\

 \bold{  \underline{According \:  to  \: the  \: question \:  , \:  \: }}

 \bold{x  =  \frac{ - ( {b}^{2}  - ac) \: ± \:  \sqrt{ {( {b}^{2}  - ac)}^{2} - 4a {b}^{2}c \:  \:   } }{2ab}  }\\  \\  \bold{x =  \frac{ - ( {b}^{2}   \: - \:  ac) \: ± \:  \sqrt{ {b}^{4}  \:  +  \:  {a}^{2} {c}^{2}  \: -  \: 2a {b}^{2}c \:  + \:  4(a {b}^{2}c )   \:  \:  } }{2ab}} \\  \\   \bold{x =  \frac{ - ( {b}^{2} \:  -  \: ac)  \: ± \: \sqrt{ {b}^{4}  +  {a}^{2}  {c}^{2}  + 2a {b}^{2} c \:  \: }  }{2ab}}  \\  \\  \bold{x =   \frac{- ( {b}^{2}  - ac)± \sqrt{ {( {b}^{2}  +  ac)}^{2}  } }{2ab} } \\  \\  \bold{x =  \frac{ -  {b}^{2} + ac +  {b}^{2}   + ac}{2ab} } \:  \:  \:  \bold{Or }\:  \:  \:  \bold{x =  \frac{ -  {b}^{2} + ac -  {b}^{2}   + ac}{2ab}}  \\  \\  \bold{x =  \frac{2ac}{2ab} } \:  \:  \:  \bold{ Or }\:  \:  \:  \bold{x =   \frac{ - 2 {b}^{2} }{2ab}}

Similar questions