Math, asked by akash775, 5 months ago

Using quadratic formula,solve the following quadratic equation for x:
p²x²+(p²-q²)x-q²=0​

Answers

Answered by brokendreams
0

Roots of quadratic equation for x are \frac{q^{2} }{^{p2} } and -1.

Step-by-step explanation:

We are given ,

p²x²+(p²-q²)x-q²=0​

and we have to find the roots of given equation with respect to x.

  • Formula used,

We use Quadratic formula for solving the question. Let us take a quadratic equation to understand the quadratic formula.

For example, we have a quadratic equation,

a*x^{2} +b*x+c=0        ---- (1)

for solving this equation we have to find Discriminant first which is denoted by D and has formula ,

D = b^{2} -4*a*c    

( a and b are the coefficients of x^{2} and x respectively and c is the constant in quadratic equation.)

Now after Discriminant the next step is to find roots of quadratic equation,

x = \frac{-b\pm\sqrt{D} }{2*a}  

by this we get two roots of x which re,

x1=\frac{-b+\sqrt{D} }{2*a}    and   x2 = \frac{-b-\sqrt{D} }{2*a}  

  • Find roots of given quadratic equation w.r.t x

we have , p²x²+(p²-q²)x-q²=0​

If we compare this equation with the standard equation (1) then we get values of a , b and c are

a=p^{2}      ,    b = p^{2} -q^{2}   and c = -q^{2}

The value of Discriminant is ,

D = b^{2} -4*a*c  

    = (p^{2} -q^{2} )^{2} - 4*p^{2} (-q)^{2}

    = (p^{2} )^{2} +(q^{2} )^{2} -2p^{2} q^{2} +4p^{2} q^{2}

    = p^{4} +q^{4} +2p^{2} q^{2}

   =(p^{2} +q^{2} )^{2}

Now the x,

x = \frac{-b\pm\sqrt{D} }{2*a}  

  = \frac{-(p^{2} -q^{2} )\pm\sqrt{(p^{2} +q^{2} ){2} }}{2*p^{2} }

now x1 and x2 are,

x1=\frac{-b+\sqrt{D} }{2*a}                                     and           x2 = \frac{-b-\sqrt{D} }{2*a}  

x1= \frac{-p^{2} +q^{2} +{(p^{2} +q^{2} ) }}{2*p^{2} }                                          x2= \frac{-p^{2} +q^{2} -{(p^{2} +q^{2} ) }}{2*p^{2} }  

x1= \frac{-p^{2}+q^{2} +p^{2} +q^{2}  }{2*p^{2} }                                             x2= \frac{-p^{2}+q^{2} -p^{2} -q^{2}  }{2*p^{2} }

x1= \frac{2*q^{2} }{2*p^{2} }                                                            x2=\frac{-2*p^{2} }{2*p^{2} }

x1= \frac{q^{2} }{p^{2} }                                                               x2= -1

 we get x1 ,x2 as

x1=\frac{q^{2} }{p^{2} }                  and     x2=-1

Roots of Quadratic equation are \frac{q^{2} }{^{p2} }  and -1.

Similar questions