Using quadratic formula, solve the quadratic equation for x: x^2-2ax+(a^2+b^2) =0
Answers
Answered by
13
Solution :
Compare x²-2ax+(a²+b²)=0 with
Ax² + Bx + C = 0 , we get
A = 1 , B = -2a , C = a² + b² ,
Discreminant (D) = B² - 4AC
= ( -2a )² - 4×1×( a² + b² )
= 4a² - 4a² - 4b²
D = -4b²
By Quadratic Formula :
x = [ ( -b ± √D )/2a ]
= [ -(-2a ) ± √(-4b² ) ]/2
= ( 2a ± 2bi )/2
= a ± bi
••••
Compare x²-2ax+(a²+b²)=0 with
Ax² + Bx + C = 0 , we get
A = 1 , B = -2a , C = a² + b² ,
Discreminant (D) = B² - 4AC
= ( -2a )² - 4×1×( a² + b² )
= 4a² - 4a² - 4b²
D = -4b²
By Quadratic Formula :
x = [ ( -b ± √D )/2a ]
= [ -(-2a ) ± √(-4b² ) ]/2
= ( 2a ± 2bi )/2
= a ± bi
••••
Answered by
4
d=(2a)2-4(a2+b2)
d=4a2-4a2-4b2
d=-4b2
therefore a/formula
x=2a+-√-4b/2
x=2a+2b/2
x=a+or-b
d=4a2-4a2-4b2
d=-4b2
therefore a/formula
x=2a+-√-4b/2
x=2a+2b/2
x=a+or-b
Similar questions
Political Science,
7 months ago
Social Sciences,
7 months ago
Social Sciences,
1 year ago
French,
1 year ago
French,
1 year ago