Math, asked by brohini23800rohi, 1 year ago

using remainder theorem, factorise: 6x^3-25x^2+32x-12

Answers

Answered by vikaskumar0507
178
f(x) = 6x³-25x²+32x-12    on putting x = 2 we get f(x) = 0 , hence (x-2) is a factor of given polynomial.
(x-2)(6x²-13x+6)
= (x-2)(6x²-9x-4x+6)
= (x-2){3x(2x-3)-2(2x-3)}
= (x-2)(2x-3)(3x-2)
Answered by hukam0685
7

Factors are  \bf \red{6 {x}^{3}  - 25 {x}^{2}  + 32x - 12  = (x - 2)(2x - 3)(3x -2 )}\\

Given:

  • 6 {x}^{3}  - 25 {x}^{2}  + 32x - 12 \\

To find:

  • Find the factors using remainder theorem.

Solution:

Theorem to be used:

Remainder Theorem:If (x-a) is a factor of polynomial p(x) then p(a)=0.

Step 1:

Find first factor using remainder theorem.

put x= 2

Let the polynomial is p(x).

p(2) = 6 {(2)}^{3}  - 25 {(2)}^{2}  + 32(2) - 12 \\

or

p(2) = 6 \times 8  - 25 \times 4  + 64 - 12 \\

or

p(2) = 48  - 100  + 64 - 12 \\

or

p(2) = 112  - 112   \\

or

\bf p(2) = 0 \\

So,

\bf (x - 2) is a factor of polynomial.

Step 2:

Divide p(x) by (x-2).

 \:  \:  \:  \:  \:  \:  \:  \:  \: x - 2 \: ) \: 6 {x}^{3}  - 25 {x}^{2}  + 32x - 12 \: (6 {x}^{2} - 13x  + 6 \\ 6 {x}^{3} - 12 {x}^{2}    \:  \:  \:  \:  \:  \:  \:  \: \\( - ) \:   \:  \:  \:  \:  \: ( + ) \:  \:  \:  \:  \:  \:  \\  -  -  -  -  -  -  -  -  -  \\  - 13 {x}^{2}   + 32x \\  - 13 {x}^{2}  + 26x \\ (  + ) \:  \:  \:  \:  (- ) \\  -  -  -  -  -  -  -  - \\ 6x - 12 \\ 6x - 12 \\ ( - ) \:  \:  \: ( + ) \\  -  -  -  -  -  -  \\ 0 \\  -  -  -  -  -  -

Here,

Quotient is 6 {x}^{2} - 13x  + 6 \\

Step 3:

Factorise the quotient polynomial to find the other factors of p(x).

6 {x}^{2} - 13x  + 6 = 6 {x}^{2} - 9x   - 4x+ 6 \\

or

 = 3x(2x - 3) - 2(2x - 3) \\

or

 6 {x}^{2}  - 13x + 6= (2x - 3)(3x - 2) \\

Thus,

Factors are \bf 6 {x}^{3}  - 25 {x}^{2}  + 32x - 12  = (x - 2)(2x - 3)(3x -2 )\\

Learn more:

1) FACTORISE 9X3-3X2-5X-1

https://brainly.in/question/1359354

2) factorise the cubic polynomial Y3-6y2+11y-6

https://brainly.in/question/3944246

Similar questions