Math, asked by alwalkarthik6, 7 months ago

using remainder theorem find the reminder when x^3-6x^2+2x-4 divided by (1-2x)​

Answers

Answered by yashdeepchouhan7
1

Step-by-step explanation:

let p(x)=x^3-6x^2+2x-4

first find the root of 1-2x

=>1-2x=0

=>x=1/2

now, by remainder theorem when p(x) is divided by 1-2x the remainder is

= p(1/2)=(1/2)³-6(1/2)² +2(1/2)-4

=1/8-3/2+1-4

=(1-12-24)/8

= -35/8ans

Answered by ItzRadhika
34

{\huge{\underline{\underline{\sf{\blue{SOLUTION:-}}}}}}

{\huge{\underline{\underline{\sf{\red{Given:-}}}}}}

⠀⠀⠀⠀• p(x) = x³-6x²+2x-4

⠀⠀⠀ • g(x) = 1-2x

{\huge{\underline{\underline{\sf{\red{To\:Calculate :-}}}}}}

⠀⠀⠀⠀• Find Remainder __?

{\huge{\underline{\underline{\sf{\red{Explanation :-}}}}}}

⠀⠀⠀⠀• p(x) = x³-6x²+2x-4

⠀⠀⠀ • g(x) = 1-2x

⠀⠀⠀⠀⠀➯ 1-2x=0

⠀⠀⠀⠀⠀➯ -2x=-1

⠀⠀⠀⠀⠀➯ x= -1/-2

⠀⠀⠀⠀⠀➯ x= 1/2

• p(x) = x³-6x²+2x-4

Putting x= 1/2 in p(x)

☞ \: ( \frac{1}{2} ) {}^{2}  - 6 \times ( \frac{1}{2} ) {}^{2}  + 2 \times  \frac{1}{2}  - 4

☞ \:  \frac{1}{8}  - 6 \times  \frac{1}{4}  + 2 \times  \frac{1 }{2}  - 4

☞ \:   \frac{1}{8}  -  \frac{3}{2}  +  \frac{1}{1}  - 4

Take LCM

☞ \:  \frac{1 - 12 + 8 - 32}{8}

☞ \:   \frac{ - 44 + 9}{8}

{\boxed{\red{\tt{☞ -35/8 }}}}

{\huge{\underline{\underline{\sf{\blue{Hence :-}}}}}}

⠀⠀⠀⠀ • Remainder is {-35/8}

__________________________________________________

Similar questions