Math, asked by sreemoyeesaha413, 4 months ago

Using remained theorem, find the value of k if on dividing 2x³ + 3x² - kx + 5 by x - 2, leaves a remainder 7.​

Answers

Answered by ayanzubair
6

Step-by-step explanation:

\bf\huge\textbf{\underline{\underline{Accrording\:to\:the\:Question}}}AccrordingtotheQuestion  

f(x) = 2x³ + 3x² - kx + 5.

f(x) is divided by x - 2  it leaves 7 as a remainder

f(x) = x - 2

f(x) ⇒ x = 2

\bf\huge\textbf{\underline{\underline{Put\:Value\:of\:x\:in\:Equation}}}PutValueofxinEquation

f(2) = 7  

f(2) = 2(2)³ + 3(2)² - k(2) + 5

⇒ 7 = 16 + 12 - 2k + 5

⇒ 7 = 33 - 2k

⇒ -26 = -2k

⇒ k = 13.

\bf\huge{\boxed{\bigstar{\sf\:{Hence\:k\:=\:13}}}}★Hencek=13

Similar questions