Math, asked by papafairy143, 8 hours ago

Using Rolles theorem, prove that there is at least one real root of the equation 51x^101-2323x^100-45x+1035=0 in (45^1/100, 46)​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: {51x}^{101} -  {2323x}^{100} - 45x + 1035 = 0

To show that the above equation have at least one real root in the given interval, we first assume the polynomial which is integration of above equation, i.e.

Let assume that

\rm :\longmapsto\: f(x) = \displaystyle\int\rm ({51x}^{101} -  {2323x}^{100} - 45x + 1035)dx

\rm :\longmapsto\:f(x) = \dfrac{ {x}^{102} }{2}  - \dfrac{2323 {x}^{101} }{101}   -  \dfrac{45 {x}^{2} }{2}  +1035x  + c

and the interval is considered as

\rm :\longmapsto\:[ {45}^{ \frac{1}{100} } , \: 46]

Now,

Step :- 1 Every polynomial function is always continuous.

 \purple{\rm\implies \:f(x) \: is \: continuous \: on \: [ {45}^{ \frac{1}{100} } , \: 46]}

Step :- 2

Consider,

\rm :\longmapsto\:f(x) = \dfrac{ {x}^{102} }{2}  - \dfrac{2323 {x}^{101} }{101}  - \dfrac{45 {x}^{2} }{2}  +1035x  + c

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:f'(x) =  {51x}^{101} -  {2323x}^{100} - 45x + 1035

Thus, f'(x) is a polynomial function.

 \purple{\rm\implies \:f(x) \: is \: differentiable \: on \: ({45}^{ \frac{1}{100} } , \: 46)}

Step :- 3

\rm :\longmapsto\:f(x) = \dfrac{ {x}^{102} }{2}  - \dfrac{2323 {x}^{101} }{101}   -  \dfrac{45 {x}^{2} }{2}  +1035x  + c

So,

\rm :\longmapsto\:f(46) = \dfrac{ {46}^{102} }{2}  - \dfrac{2323 {(46)}^{101} }{101}  - \dfrac{45 {(46)}^{2} }{2}  +1035(46)  + c

\rm :\longmapsto\:f(46) = \dfrac{46 \times  {46}^{101} }{2}  - 23 {(46)}^{101}    - 45 \times 23 \times 46  +1035(46)  + c

\rm :\longmapsto\:f(46) =23 {(46)}^{101}   - 23 {(46)}^{101}   -  45.23.46  +1035(46)  + c

\rm :\longmapsto\:f(46) = 1035 \times 46 - 1035(46)  + c

\rm :\longmapsto\:f(46) =  c

Now, Consider

\rm :\longmapsto\:f({45}^{ \frac{1}{100} }) = \dfrac{( {{45}^{ \frac{1}{100} })}^{102} }{2}  - \dfrac{2323 {({45}^{ \frac{1}{100} })}^{101} }{101}  - \dfrac{45 {({45}^{ \frac{1}{100} })}^{2} }{2} + 1035({45}^{ \frac{1}{100} })  + c

\rm :\longmapsto\:f({45}^{ \frac{1}{100} }) = \dfrac{( {{45}^{ \frac{51}{50} })}}{2}  - 23({45}^{ \frac{101}{100} })  - \dfrac{ {({45}^{ \frac{51}{50} })}}{2}  + 1035({45}^{ \frac{1}{100} })  + c

\rm :\longmapsto\:f({45}^{ \frac{1}{100} }) =  c

 \purple{\rm\implies \:f({45}^{ \frac{1}{100} }) = f(46) = c}

So, Rolle's Theorem is applicable, so there exist atleast one real number c such that

\rm :\longmapsto\:f'(x) = 0 \:  on \: x \in \: ({45}^{ \frac{1}{100} }, \: 46)

\rm\implies \: {51x}^{101} -  {2323x}^{100} - 45x + 1035 = 0 \: in \: ({45}^{ \frac{1}{100} },46)

Hence, Proved

Similar questions