Math, asked by anura9023, 1 month ago

Using sequences and series please give me answer.​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y = \dfrac{1}{1 + x}

Consider the series

\rm :\longmapsto\:y +  {y}^{2} +  {y}^{3}  +  -  -  -  +  {y}^{n}

Its an Geometric sequence with

  • First term, a = y

  • Common ratio, r = y

  • Number of terms = n

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{a(1 -  {r}^{n})}{1 - r}  \: provided \: that \: r  \: \ne \: 1}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of GP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

So, using this identity, we get

\rm :\longmapsto\:S_n = \dfrac{y(1 -  {y}^{n} )}{1 - y}

can be rewritten as

\rm :\longmapsto\:S_n = \dfrac{1}{1 + x}  \times \dfrac{(1 -  {y}^{n} )}{1 - \dfrac{1}{1 + x} }

\rm :\longmapsto\:S_n = \dfrac{1}{1 + x}  \times \dfrac{(1 -  {y}^{n} )}{ \dfrac{1 + x - 1}{1 + x} }

\rm :\longmapsto\:S_n = \dfrac{1}{1 + x}  \times \dfrac{(1 -  {y}^{n} )}{ \dfrac{x }{1 + x} }

\rm :\longmapsto\:S_n =  \dfrac{1 -  {y}^{n}}{ x }

Hence,

\rm :\longmapsto\:y +  {y}^{2}  +  {y}^{3} +  -  -  +  {y}^{n}   =  \dfrac{1 -  {y}^{n}}{ x }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions