Using Simplex method, maximuze Z= 3x +5y subject to constraints
3x + 2y < 18, x < 4, y < 6 and x, y > 0.
Answers
Answered by
0
Answer:
Shaded portion OABCD is the feasible region,
Where O(0,0), A(7,0), D(0,6)
For B:
3x+y=21....(i)
x+y=9......(ii)
Subtract (ii) from (i) we get
3x+y−x−y=21−9
2x=12
x=6
y=9−6=3
∴B(6,3)
For C:
x+y=9....(iii)
x+4y=24......(iv)
Subtract (ii) from (i) we get
x+y−x−4y=9−24
−3y=−15
y=5
x=9−5=4
∴C(4,5)
Z=3x+5y
Z at O(0,0)=3(0)+5(0)=0
Z at A(7,0)=3(7)+5(0)=21
Z at B(6,3)=3(6)+5(3)=33
Z at C(4,5)=3(4)+5(5)=37
Z at D(0,6)=3(0)+5(6)=30
Thus, Z is maximized at C(4,5) and its maximum value is 37.
Similar questions
Political Science,
2 months ago
Physics,
2 months ago
Math,
4 months ago
Math,
4 months ago
Math,
9 months ago