Math, asked by ayush1797, 1 year ago

using simpsons rule find 10to0 x^2 dx by taking n=10​

Answers

Answered by Swarup1998
13

We need to find the value of \large{\mathsf{\int_{10}^{0} x^{2}dx}} using Simpson's One-third Rule.

Working Formula -

\large{\mathsf{I_{S}^{C}=\int_{x_{0}}^{x_{0}+nh}ydx}}

  = \large{\mathsf{\frac{h}{3}[y_{0}+y_{n}}}

\large{\mathsf{+4(y_{1}+y_{3}+...+y_{n-3}+y_{n-1})}}

\large{\mathsf{+2(y_{2}+y_{4}+...+y_{n-4}+y_{n-2})]}}

{ see the attached table for the computational table }

\large{\mathsf{h=\frac{x_{10}-x_{0}}{n}}}

  \large{\mathsf{=\frac{0-10}{10}}}

  \large{\mathsf{=\frac{-10}{10}}}

  = - 1

From the table, we can find

\large{\mathsf{I_{S}^{C} = \frac{h}{3}*(Total)}}

    = \large{\mathsf{\frac{-1}{3}*1000}}

    = \large{\mathsf{-\frac{1000}{3}}} ,

which is the required integral value, computed using Simpson's One-third Rule.

To confirm this value, let us try solving the sum using integration formulas.

Now, \large{\mathsf{\int_{10}^{0} x^{2}dx}}

      = \large{\mathsf{[\frac{x^{3}}{3}]_{10}^{0}}}

      = \large{\mathsf{\frac{0}{3}-\frac{1000}{3}}}

      = \large{\mathsf{-\frac{1000}{3}}}

We see that, the value of the integration in both the rules are same. Hence, verified.

Thus, solved.

Attachments:
Similar questions