Math, asked by Raeeba, 1 month ago

Using Sridharacharyya's formula solve:
a(x^2+1) = (a^2+1)x, a is not equal to 0.

Answers

Answered by LivetoLearn143
1

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\:a( {x}^{2} + 1) = ( {a}^{2} + 1)x

\rm :\longmapsto\:a{x}^{2} +a = x({a}^{2} + 1)

\rm :\longmapsto\:a{x}^{2}  - x({a}^{2} + 1) + a = 0

We know,

SriSridharacharyya's formula is

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

Here,

\rm :\longmapsto\:a = a

\rm :\longmapsto\:b =  {a}^{2} + 1

\rm :\longmapsto\:c = a

On substituting the values,

\rm :\longmapsto\:x = \dfrac{ {a}^{2} + 1 \:  \pm \:  \sqrt{ { {( {a}^{2} + 1)} }^{2} - 4(a)(a)} }{2a}

\rm :\longmapsto\:x = \dfrac{ {a}^{2} + 1 \:  \pm \:  \sqrt{ { {( {a}^{2} + 1)} }^{2} - 4 {a}^{2} } }{2a}

\rm :\longmapsto\:x = \dfrac{ {a}^{2} + 1 \:  \pm \:  \sqrt{ { {( {a}^{2}  -  1)} }^{2} } }{2a}

\rm :\longmapsto\:x = \dfrac{ {a}^{2} + 1 \:  \pm \:  { {( {a}^{2}  -  1)} }}{2a}

\rm :\longmapsto\:x = \dfrac{ {a}^{2} + 1  +  \:  { { {a}^{2}  -  1} }}{2a}  \:  \: or \:  \: \dfrac{ {a}^{2} + 1 - { {{a}^{2} + 1} }}{2a}

\rm :\longmapsto\:x = \dfrac{2{a}^{2}}{2a}  \:  \: or \:  \: \dfrac{ 2}{2a}

\rm :\longmapsto\:x = a  \:  \:  \: or \:   \: \: \dfrac{1}{a}

Similar questions