using suitable identities evaluate (1÷3a-b)^3
Answers
Answered by
1
Using the identity (x – y) 3
= x3 - y3 - 3x2y + 3xy2
We get;
(100) 3 - 13 - [3 x (100) 2 x 1) + (3 x 100 x 12
= 1000000 – 1 30000 + 300
= 1000000 + 300 – 1 – 30000 = 970299
Answered by
2
Heya ✋
Let see your answer !!!!
(1/3a - b)^3
We apply this identity
(a - b)^3 = a^3 - b^3 - 3a^2b + 3ab^2
Hence ,
= (1/3a)^3 - (b)^3 - 3 × 1/3a × b(1/3a - b)
= 1/27a^3 - b^3 - ab(1/3a - b)
= 1/27a^3 - b^3 - b/3 + ab^2
Thanks :)))))
Let see your answer !!!!
(1/3a - b)^3
We apply this identity
(a - b)^3 = a^3 - b^3 - 3a^2b + 3ab^2
Hence ,
= (1/3a)^3 - (b)^3 - 3 × 1/3a × b(1/3a - b)
= 1/27a^3 - b^3 - ab(1/3a - b)
= 1/27a^3 - b^3 - b/3 + ab^2
Thanks :)))))
Similar questions