using suitable identity evaluate (3x+2)^2
Answers
Answer:
9x^2 +4+6x
Step-by-step explanation:
Formula for (a+b) ^2 =a^2 +b^2+2ab
(3x)^2+(2)^2 +2(3x×2)
9x^2 +4+6x
Given :
- Evaluate - (3x + 2)²
Algebraic Identity :
- An algebraic identity is an equality that holds for any values of its variables.
- It makes the calculation easy
Algebraic Identity required :
- (a + b)² = a² + b²+ 2ab
Solution :
We are going to use algebraic identity in order to get the value of the expression
Here,
→ a = 3x
→ b = 2
Therefore,
Substituting the respective values in it, we get -
→ (3x)² + (2)² + 2 * 3x * 2
→ 9x² + 4 + 12x
Therefore,
The answer is 9x² + 12x + 4
___________________________
Important Algebraic identities are:-
★ (a + b)² = a² + 2 ab + b²
★(a - b)² = (a + b)² - 4 ab
★ a² - b² = (a + b) (a - b)
★ (x + a) (x + b) =x² + (a + b) x + ab
★ (a + b)² = (a - b)² + 4 ab
★ (a - b)² = a² - 2 ab + b²
★ (a - b)³= a³- 3a²b + 3ab² - b³
★ (a - b)³ = a³- b³-3ab (a-b)
★ a³+ b³ = (a + b) (a²-ab + b²)
★ a³- b³= (a - b)(a²+ ab + b²)
★ a³- b³= (a - b)³ + 3ab(a-b)
★ (a + b + c)²= a²+ b²+ c² + 2ab + 2bc + 2ca
★ (a + b - c)² = a²+ b²+ c² + 2ab - 2bc -2ca
★ (a - b + c)²= a² + b²+c²-2ab -2bc +2ca
★ (a - b - c)²= a²+b²+c²-2ab +2bc -2ca
★a² + b² = (a - b)² + 2ab
★ (a + b + c)³ = a³ + b³ + c³ + 3a²b + 3a²c + 3ab²+3b²c + 3ac² + 3bc² + 6abc
★ (a - b - c)³ = a³ - b³ - c³ - 3a²b - 3a²c + 3ab² + 3b²c + 3ac² - 3bc² + 6abc