Math, asked by riyaJaat, 3 months ago

using suitable identity evaluate (3x+2)^2​

Answers

Answered by Anonymous
6

Answer:

9x^2 +4+6x

Step-by-step explanation:

Formula for (a+b) ^2 =a^2 +b^2+2ab

(3x)^2+(2)^2 +2(3x×2)

9x^2 +4+6x

Answered by Intelligentcat
52

Given :

  • Evaluate - (3x + 2)²

Algebraic Identity :

  • An algebraic identity is an equality that holds for any values of its variables.
  • It makes the calculation easy.

Algebraic Identity required :

  • (a + b)² = a² + b²+ 2ab

Solution :

We are going to use algebraic identity in order to get the value of the expression.

Here,

→ a = 3x

→ b = 2

Therefore,

Substituting the respective values in it, we get -

→ (3x)² + (2)² + 2 * 3x * 2

→ 9x² + 4 + 12x

Therefore,

The answer is 9x² + 12x + 4

___________________________

Important Algebraic identities are:-

★ (a + b)² = a² + 2 ab + b²

 

★(a - b)² = (a + b)² - 4 ab

★ a² - b² = (a + b) (a - b)

 

★ (x + a) (x + b) =x² + (a + b) x + ab

★ (a + b)² = (a - b)² + 4 ab

★ (a - b)² = a² - 2 ab + b²

★ (a - b)³= a³- 3a²b + 3ab² - b³

★ (a - b)³ = a³- b³-3ab (a-b)

★ a³+ b³ = (a + b) (a²-ab + b²)

★ a³- b³= (a - b)(a²+ ab + b²)

★ a³- b³= (a - b)³ + 3ab(a-b)

★ (a + b + c)²= a²+ b²+ c² + 2ab + 2bc + 2ca

★ (a + b - c)² = a²+ b²+ c² + 2ab - 2bc -2ca

★ (a - b + c)²= a² + b²+c²-2ab -2bc +2ca

★ (a - b - c)²= a²+b²+c²-2ab +2bc -2ca

★a² + b² = (a - b)² + 2ab

★  (a + b + c)³ = a³ + b³ + c³ + 3a²b + 3a²c + 3ab²+3b²c + 3ac² + 3bc² + 6abc

★ (a - b - c)³ = a³ - b³ - c³ - 3a²b - 3a²c + 3ab² + 3b²c + 3ac² - 3bc² + 6abc

Similar questions