Using suitable identity factorise 32a3 – 72a.
need it urgently
Answers
Answered by
0
Step-by-step explanation:
32a3 +108b3
= 4(8a3 + 27b3)
= 4((2a)3 + (3b)3) [Using a3 + b3 = (a + b)(a2 - ab + b2)]
= 4 [(2a + 3b)((2a)2 - 2a x 3b + (3b)2)]
= 4(2a + 3b)(4a2 - 6ab + 9b2)
∴ 32a3 +108b3 = 4(2a + 3b)(4a2 - 6ab + 9b2 )
Similar questions
Math,
9 hours ago
Physics,
17 hours ago
CBSE BOARD XII,
8 months ago
Science,
8 months ago
Math,
8 months ago