Using suitable identity find.. 231^2 - 131^2...............and......... 97×103
Answers
Answered by
34
We have to find the value of
A. 231² - 131²
B. 97 × 103 using suitable identity.
Solution : A. 231² - 131²
we know, algebraic Identity, a² - b² = (a - b)(a + b)
use it here, let a = 231 and b = 131
then, 231² - 131² = (231 - 131)(231 + 131)
= 100 × 362
= 36200
Therefore 231² - 131² = 36200
B. 97 × 103
can we write it (100 - 3)(100 + 3)
See above algebraic Identity, a² - b² = (a - b)(a + b)
if we assume 100 = a and 3 = b
Then, (100 - 3)(100 + 3) = (a - b)(a + b) = a² -b²
= 100² - 3²
= 100 × 100 - 3 × 3
= 10000 - 9
= 9991
Therefore 97 × 103 = 9991
Answered by
2
Answer:
Ans: 36200
Step-by-step explanation:
dentity used a^2–b^2 = (a+b)(a-b)
231^2-131^2= (231+131)(231-131)
= 362*100 = 36200
Similar questions
Math,
5 months ago
Political Science,
5 months ago
Math,
5 months ago
Physics,
10 months ago
Science,
10 months ago
Social Sciences,
1 year ago