Math, asked by Sonamscales14, 10 months ago

Using suitable identity find.. 231^2 - 131^2...............and......... 97×103

Answers

Answered by abhi178
34

We have to find the value of

A. 231² - 131²

B. 97 × 103 using suitable identity.

Solution : A. 231² - 131²

we know, algebraic Identity, a² - b² = (a - b)(a + b)

use it here, let a = 231 and b = 131

then, 231² - 131² = (231 - 131)(231 + 131)

= 100 × 362

= 36200

Therefore 231² - 131² = 36200

B. 97 × 103

can we write it (100 - 3)(100 + 3)

See above algebraic Identity, a² - b² = (a - b)(a + b)

if we assume 100 = a and 3 = b

Then, (100 - 3)(100 + 3) = (a - b)(a + b) = a² -b²

= 100² - 3²

= 100 × 100 - 3 × 3

= 10000 - 9

= 9991

Therefore 97 × 103 = 9991

Answered by vishwha
2

Answer:

Ans: 36200

Step-by-step explanation:

dentity used a^2–b^2 = (a+b)(a-b)

231^2-131^2= (231+131)(231-131)

= 362*100 = 36200

Similar questions