using suitable identity find (x+y+z)^2-(x-y-z)^2
Answers
Answered by
0
The answer is " 0 "
Step-by-step explanation:
This is in the form of a^2 - b^2
a^2 - b^2 = ( a + b ) ( a - b )
= [ ( x + y + z ) + ( - x - y - z ) ] [ ( x + y + z ) - ( - x - y - z ) ]
= ( 0 ) * [ ( x + y + z ) + ( x + y + z ) ]
= ( 0 ) * ( 2x + 2y + 2z )
= 0 .
( x + y + z )^2 - ( - x - y - z )^2 = 0
Answered by
3
Answer:
Step-by-step explanation:
( x + y + z )² - ( x - y - z )²
= x² + y² + z² + 2xy + 2yz + 2zx - ( x² + y² + z² - 2xy + 2yz - 2zx )
= x² + y² + z² + 2xy + 2yz + 2zx - x² - y² - z² + 2xy - 2yz + 2zx (∵ - × + = - ; - × - = + )
= 4xy + 4zx ( or ) 4x ( y + z ) is the answer.
Similar questions