Math, asked by alkabharatpatel21118, 5 months ago

Using suitable Identity, get the product : (x-4)(x+7) .​

Answers

Answered by Dinosaurs1842
9

(x-4)(x+7)

identity : (x+a)(x+b) = x² + x(a+b) + ab

(x-4)(x+7)

= x² + x(-4+7) + (-4)(7)

= x² + x(3) - 28

x² + 3x - 28

HOPE IT HELPS!

Have a great day!

Answered by Anonymous
1

 \huge \sf \underline \red{Answer : }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \rm \purple{  {x}^{3} + 3x -28  }

 \huge \sf \underline \pink{Given : }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{(x - 4)(x + 7)}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \blue{ (x - 4)(x + 7)}

 \:  \:  \:  \sf \underline{we \: know \: that \: formula}

 \bf{ \boxed{ \underline{ \underline{ \red{ \tt{(x + a)(x + b) =  {x}^{2} + (a + b) + ab \: }}}}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \blue{ (x + ( - 4))(x + 7)}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \blue{  {x}^{2} + ( - 4 + 7)x + ( - 4) \times (7) }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \blue{  {x}^{3} + 3x -28  }

Similar questions