Math, asked by kp081355814, 8 months ago

Using suitable identity simplify each of the following​

Attachments:

Answers

Answered by vanshsvst
4

Answer:

here are your answer .

Step-by-step explanation:

(a).

 {(a {x }^{2}  - b {y}^{2} )}^{2}

using the identity.

 {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

 {(a {x }^{2}  - b {y}^{2} )}^{2}  =  ({a {x}^{2} })^{2}  +  {(b {y}^{2}) }^{2}  - 2(a {x}^{2}{b {y}^{2} })

 =  {a}^{2}  {x}^{4}  +  {b}^{2}  {y}^{4}  - 2ab {x}^{2}  {y}^{2}

-----------------------------------------------------------------------------------

(b.)

 {(2a - 3b)}^{2}  + (2a + 3b)^{2}

using the identity

 {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

(4 {a}^{2}  + 9 {b}^{2}  - 2(2a)(3b)) + (4 {a}^{2}  + 9 {b}^{2}  + 2(2a)(3b))

4 {a}^{2}  + 9 {b}^{2}  + 4 {a}^{2}  + 9 {b}^{2}

8 {a}^{2}  + 18 {b}^{2}

----------------------------–-----------------------------------------------------

(c.)

 {(3p + 6)}^{2}  -  {(2p - 8)}^{2}

using the identity

( {x}^{2}  -  {y}^{2} ) = (x - y)(x + y)

(3p + 6 - 2p + 8)(3p + 6 + 2p - 8)

(p + 14)(5p - 2)

(5 {p}^{2}  + 70p - 2p - 28)

5 {p}^{2}  + 68p - 28

----------------------------------------------------------------------------------

(d.)

 {(x - y)}^{2}   + 4xy

using the identity

 {(a - b)}^{2}   =  {a}^{2}  +  {b}^{2}  - 2ab

( {x}^{2}  +  {y}^{2}  - 2xy + 4xy)

 {x}^{2}  +  {y}^{2}  + 2xy

----------------------------------------------------------------------------------

hope it helps u . Mark this answer as brainleists

Similar questions