Math, asked by pavankumar777, 8 months ago

Using tan (A + B) =
(tan A+tan B)/(1-tan A*tan B, show that tan 75º = 2 + √3.​

Answers

Answered by ITzBrainlyGuy
46

\huge{\mathrm{\underline{\underline\pink{ANSWER}}}}

we know that

 \tan( \alpha  +  \beta )  =  \frac{ \tan( \alpha )  +  \tan( \beta ) }{1 -  \tan( \alpha ). \tan( \beta )  }  \\

and,

 \tan(75°)

can write as

 \tan(45° + 30°)

we know that

 \tan(45°)  = 1 \\ and \\  \tan(30°)  =  \frac{1}{ \sqrt{3} }

{\mathrm{\underline{\underline\green{using \:  \tan( \alpha  +  \beta )  =  \frac{ \tan( \alpha )  +  \tan( \beta ) }{1 -  \tan( \alpha) . \tan( \beta )  } }}}}

now,

 \alpha  = 45° \\  \beta  = 30°

substitute in the above given formula

 \tan(45° + 30°)  =  \frac{ \tan(45°)  +  \tan(30°) }{1 -  \tan( 45°) . \tan(30°) }

 \tan(75°)  =  \frac{1 +  \frac{1}{ \sqrt{3} } }{1 - (1)( \frac{1}{ \sqrt{3} } )}  \\  \tan(75°)  =  \frac{ \frac{ \sqrt{3} + 1 }{ \sqrt{3} } }{1 -  \frac{1}{ \sqrt{3} } }  \\   \\ \tan(75°)  = \frac{ \frac{ \sqrt{3}  + 1}{ \sqrt{3} } }{ \frac{ \sqrt{3}  - 1}{ \sqrt{3} } }   \\  \\  \tan(75°)  =  \frac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}

rationalize the denominator

 \tan(75°)  =  \frac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 }  \times  \frac{ \sqrt{3}  + 1}{ \sqrt{3}  + 1}  \\ \\   \tan(75°)  =  \frac{ {( \sqrt{3}  + 1)}^{2} }{ {( \sqrt{3}) }^{2}  -  {(1)}^{2} } \\  \\  \tan(75°)   =  \frac{3 + 2 \sqrt{3} + 1 }{3 - 1}  \\   \\  \tan(75°)  =  \frac{4 + 2 \sqrt{3} }{2}  \\  \\ \tan(75°)  =   \frac{2(2 +  \sqrt{3}) }{2}  \\  \\

{\mathrm{\underline\green{ \tan(75°)  = 2 +  \sqrt{3} }}}

HENCE PROVED

hope this helps you please mark it as brainliest

Similar questions