Math, asked by singhgopal45169, 16 days ago

Using the definition of integral as the limit of

a sum, show that

a

0

sin x dx 1 cos a. = − ∫​

Answers

Answered by mathdude500
30

Appropriate Question :-

Using the definition of integral as the limit of a sum, show that  \displaystyle\int_{0}^{a}\rm\: sinx dx = 1 - cosa

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int_{0}^{a}\rm\: sinx dx \\

On comparing with  \displaystyle\int_{a}^{b}\rm\: f(x) dx , we get

\rm \: a = 0 \\

\rm \: b = a \\

\rm \: f(x) = sinx \\

So,

\rm \: nh \:  =  \: b - a -  -  - (1) \\

Now, Using Definition of Limit as a Sum, we have

\rm \: \displaystyle\int_{a}^{b}f(x) \: dx = \displaystyle\lim_{h \to 0}h\sum_{r=0}^{n-1}\rm f(a + rh) \\

\rm \: \displaystyle\int_{0}^{a}\rm \: sinx \: dx = \displaystyle\lim_{h \to 0}h\sum_{r=0}^{n-1}\rm f(rh) \\

So, on substituting the values, we get

\rm \: \displaystyle\int_{0}^{a} \rm \: sinx \: dx = \displaystyle\lim_{h \to 0}h\sum_{r=0}^{n-1}\rm sin(rh) \\

\rm \:  = \displaystyle\lim_{h \to 0}\rm h[sin0 + sinh + sin2h+  \cdots + sin(n - 1)h] \\

We know,

\rm sina + sin(a + b) + sin(a + 2b) +  \cdots + sin(a + (n - 1)b) \\ \rm \:  =  \: \dfrac{sin\bigg(\dfrac{nb}{2} \bigg)sin\bigg(a + \dfrac{(n - 1)b}{2}  \bigg)  }{sin\dfrac{b}{2} }  \\

So, using this result, we get (here a = 0 and b = h)

\rm \:  = \displaystyle\lim_{h \to 0}\rm h \times \dfrac{sin\bigg(\dfrac{nh}{2} \bigg)sin\bigg(0 + \dfrac{(n - 1)h}{2}  \bigg)  }{sin\dfrac{h}{2} }  \\

can be rewritten as

\rm \:  = \displaystyle\lim_{h \to 0}\rm \: sin\bigg(\dfrac{nh}{2} \bigg)sin\bigg(\dfrac{nh - h}{2}  \bigg)  \times \displaystyle\lim_{h \to 0}\rm \: \frac{h}{sin \dfrac{h}{2} }

\rm \:  = \displaystyle\lim_{h \to 0}\rm \: sin\bigg(\dfrac{a}{2} \bigg)sin\bigg(\dfrac{a - h}{2}  \bigg)  \times 2\displaystyle\lim_{h \to 0}\rm \: \frac{\dfrac{h}{2} }{sin \dfrac{h}{2} }

\rm \:  = \: sin\bigg(\dfrac{a}{2} \bigg)sin\bigg(\dfrac{a}{2}  \bigg)  \times 2 \times 1 \\

\rm \:  = \: 2sin^{2} \bigg(\dfrac{a}{2} \bigg) \\

\rm \:  =  \: 1 - cosa \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle\int_{0}^{a}\rm\: sinx dx  \:  =  \: 1 \:  -  \: cosa \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by maheshtalpada412
29

   \small\colorbox{lightyellow} {\text{ \bf♕ Brainliest answer }}

 \rule{300pt}{0.1pt}

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

Here a=0, b=a, a=nh, f(x)=sin x .

\[ \begin{aligned} \therefore \quad &\rm \int_{0}^{a} \sin x d x=\lim _{n \rightarrow x} \sum_{r=1}^{\infty}(a / n) \sin (r a / n) \\ \\ &\rm=\lim _{n \rightarrow \infty} \frac{a}{n}\left[\sin \frac{a}{n}+\sin \frac{2 a}{n}+\ldots+\frac{\sin n a}{n}\right] \\\\ &\rm=\lim _{n \rightarrow \infty} \frac{a}{n} \frac{\sin \left(\frac{a}{n}+\frac{n-1}{2} \cdot \frac{a}{n}\right) \sin \frac{n a}{2 n}}{\sin \frac{a}{2 n}} \\ \\ &\rm=\lim _{n \rightarrow \infty} \frac{2(a / 2 n)}{\sin (a / 2 n)} \cdot \sin \left(\frac{1}{2} a\left(1+\frac{1}{n}\right)\right) [\sin \left(\frac{a}{2}\right) \\\\  &\rm=2\cdot 1 \sin \left(\frac{a}{2}\right) \sin \left(\frac{a}{2}\right)\\\\  &\rm=2 \sin ^{2}\left(\frac{a}{2}\right)\\\\  &\rm=1-\cos a  \end{aligned} \]

Similar questions