Math, asked by kashmirsingh071981, 3 months ago

using the distributive property find the value of each of the following​

Attachments:

Answers

Answered by Anonymous
9

Given:

 \sf{ \dfrac{ - 13}{5}  \times \dfrac{16}{7} + \dfrac{ - 13}{5}  \times \dfrac{19}{7}}

 \:

Solution:

Distributive property:- \underline {\sf {\red {a \times b + a \times c = a(b+c)}}}

With respect to the question;

a = \sf \dfrac {-13}{5}

b = \sf \dfrac {16}{7}

c = \sf \dfrac {19}{7}

 \:

\sf{ \dfrac{ - 13}{5}  \times \dfrac{16}{7} + \dfrac{ - 13}{5}  \times \dfrac{19}{7}}

 \pink \bigstar \sf \pink{ \: Taking \:  \dfrac{ - 13}{5}  \: as \: common.}

\sf{ \dfrac{ - 13}{5} \times ( \dfrac{16}{7} +  \dfrac{19}{7}} )

\sf{ \dfrac{ - 13}{5} \times ( \dfrac{35}{7} )}

\sf{ \dfrac{ - 13}{5} \times ( \dfrac{\cancel{35}}{\cancel{7}} )}

\sf{ \dfrac{ - 13}{5} \times 5}

\sf{ \dfrac{ - 13}{\cancel5} \times \cancel{5}}

= -13

Similar questions