Math, asked by kanwalnaila045, 1 month ago

Using the elimination method
7x-3y=18
6x+7y= 25

The answer should be (3,1)
Plz answer hurry​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given pair of linear equations is

\rm :\longmapsto\:7x - 3y = 18 -  -  - (1)

and

\rm :\longmapsto\:6x + 7y = 25 -  -  - (2)

On multiply equation (1) by 7 and equation (2) by 3, we get

\rm :\longmapsto\:49x - 21y = 126 -  -  - (3)

and

\rm :\longmapsto\:18x + 21y = 75 -  -  - (4)

On adding equation (3) and (4), we get

\rm :\longmapsto\:67x = 201

\rm :\longmapsto\:x = \dfrac{201}{67}

\rm \implies\:\boxed{ \tt{ \: x \:  =  \: 3 \: }}

On substituting the value of x in equation (2), we get

\rm :\longmapsto\:6(3) + 7y = 25

\rm :\longmapsto\:18 + 7y = 25

\rm :\longmapsto\: 7y = 25  - 18

\rm :\longmapsto\: 7y = 7

\rm \implies\:\boxed{ \tt{ \: y \:  =  \: 1 \: }}

Hence,

 \red{\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:\begin{cases} &\bf{x \:  =  \: 3}  \\ \\ &\bf{y \:  =  \: 1} \end{cases}\end{gathered}\end{gathered}}

Verification

Consider the equation

\rm :\longmapsto\:7x - 3y = 18

On substituting the values of x and y, we get

\rm :\longmapsto\:7(3) - 3(1) = 18

\rm :\longmapsto\:21 - 3 = 18

\bf :\longmapsto\:18 = 18

Hence, Verified

Similar questions