Physics, asked by meeashu9487, 9 months ago

Using the experimental value for the specific heat of gold at 155 K of cv/R=2.743, estimate the Einstein characteristic temperature (in K) - use MWAu=197.0 kg/kmol.​

Answers

Answered by CarliReifsteck
3

Given that,

Temperature = 155 K    

\dfrac{c_{v}}{R}=2.743

We need to calculate the einstein characteristic temperature

Using formula of specific heat at low temperature

C_{v}=3R(\dfrac{\theta_{E}}{T})^2\timese^{-\frac{\theta_{E}}{T}}

Suppose, \dfrac{\theta_{E}}{T}=x

C_{v}=3R(x^2)\timese^{-x}...(I)

We know that,

The expansion of e^{-x} is

e^{-x}=1-\dfrac{x}{1!}+\dfrac{x^2}{2!}-\dfrac{x^3}{3!}+........</p><p>Put the value of [tex]e^{-x} in equation (I)

C_{v}=3Rx^2\times(1-\dfrac{x}{1!}+\dfrac{x^2}{2!}-\dfrac{x^3}{3!}+........)

C_{v}=3R\times(x^2-\dfrac{x^3}{1!}+\dfrac{x^4}{2!}-\dfrac{x^5}{3!}+........)

Now, neglecting higher powers

C_{v}=3R\times x^2

C_{v}=3R\times(\dfrac{\theta_{E}}{T})^2

\dfrac{C_{v}}{R}=3\times(\dfrac{\theta_{E}}{T})^2

Put the value of \dfrac{C_{v}}{R} and temperature

2.743=3\times(\dfrac{\theta_{E}}{155})^2

\theta_{E}^2=\dfrac{2.743\times(155)^2}{3}

\theta_{E}=\sqrt{\dfrac{2.743\times(155)^2}{3}}

\theta_{E}=148.2\ K

Hence, The Einstein characteristic temperature is 148.2 K.

Learn more :

Topic : specific heat

Similar questions