Math, asked by pinkikumari97192, 5 hours ago

Using the formula (a-b)^2=(a^2-2ab+b^2), evaluate: i》(196)^2 ii》(689)^2​

Answers

Answered by Anonymous
19

GivEn:

  • (a - b)² = (a² + b² - 2ab)

To find:

  • i》(196)²
  • ii》(689)²

Solution:

• let (196)² be (200 - 4)².

Given, Identity - (a - b)² = (a² + b² - 2ab).

Where,

  • A = 200
  • B = 4

》(196)²

》(200 - 4)²

(a - b)² = (a² + b² - 2ab)

》(200)² + (4)² - 2(200)(4)

》40000 + 16 - 1600

》40016 - 1600

》38416

∴ Hence, (196)² = 38416.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

• Let (689)² be (700 - 11)²

Given, Identity - (a - b)² = (a² + b² - 2ab).

Where,

  • A = 700
  • B = 11

》(689)²

》(700 - 11)²

★ (a - b)² = (a² + b² - 2ab)

》(700)² + (11)² - 2(700)(11)

》490000 + 121 - 15400

》490121 - 15400

》474721

∴ Hence, (689)² = 474721

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀》Algebraic identities :

  • (a+ b)² = a² + b² + 2ab

  • ( a - b )² = a² + b² - 2ab

  • ( a + b )² + ( a - b)² = 2a² + 2b²

  • ( a + b )² - ( a - b)² = 4ab

  • ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

  • a² + b² = ( a + b)² - 2ab

  • (a + b )³ = a³ + b³ + 3ab ( a + b)

  • ( a - b)³ = a³ - b³ - 3ab ( a - b)

  • If a + b + c = 0 then a³ + b³ + c³ = 3abc
Answered by Anonymous
25

Given:

Using the formula (a-b)^2=(a^2-2ab+b^2), evaluate:

  1. 196²
  2. 689²

Solution:

1. 196²

 \pmb {\tt{\underline{\underline {So, \:  According \:  to \:  the  \: question, \:  we  \: need  \: to \:  evaluate  \: 196²  \: by  \: using  \: the  \: formula \:  (a-b)^2=(a^2-2ab+b^2)}}}}

Let 196² be (200 – 4)²

Also Let,

  • a = 200

  • b = 4

\\  \\  \\✞   {\tt{\underline{\underline{(a-b)^2 =(a^2-2ab+b^2)}}}}  \:  \:  \:  \:  \:  \:  \:\\  \\  \\  \tt \:  =  {(200 -4) }^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\   \tt=  {200}^{2}  - 2(200 \times 4) +  {4}^{2}  \\  \\  \\  \:  \:  \:  \:  \:  \:  \tt  = 40000 - (2 \times 800) + 16 \\  \\  \\  \tt = 40000 - 1600 + 16 \\  \\  \\  \tt = 38400 + 16 \\  \\  \\  \tt \:  = 38416

  • Hence, 196² = 38416

________________________________________

2. 689².

 \pmb {\tt{\underline{\underline{So, \:  According \:  to \:  the  \: question, \:  we  \: need  \: to \:  evaluate  \: 196²  \: by  \: using  \: the  \: formula \:  (a-b)^2=(a^2-2ab+b^2)}}}}

Let 689² be (700 – 11)²

Also Let,

  • a = 700

  • b = 11

\\  \\  \\✞    {\tt{\underline{\underline{(a-b)^2 =(a^2-2ab+b^2)}}}}  \:  \:  \:  \:  \:  \:  \:\\  \\  \\  \tt \:  =  {(700 -11) }^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\   \tt=  {700}^{2}  - 2(700 \times 11) +  {11}^{2}  \\  \\  \\  \:  \:  \:  \:  \:  \:  \tt  = 490000 - (2 \times 7700) + 121 \\  \\  \\  \tt = 40000 - 15400 + 121 \\  \\  \\  \tt = 474600 + 121 \\  \\  \\  \tt \:  = 474721

  • Hence, 689² = 474721

________________________________________

Algebric identities:

  1. (a + b)² = a² + 2ab + b²
  2. (a - b)² = a² – 2ab + b²
  3. a² – b² = (a + b) (a – b)
  4. (a + b)³ = a³ + 3a²b + 3ab² + b³
  5. (a – b)³ = a³ – 3a²b + 3ab² + b³
  6. a³ + b³ = (a + b)(a² – ab + b²)
  7. a³ – b³ = (a – b) (a² + ab + b²)
Similar questions