Using the formula (a-b)^2=(a^2-2ab+b^2), evaluate i》(689)^2
Answers
Answered by
0
Step-by-step explanation:
We have (a – b)2 = (a2 – 2ab + b2)(689)2 can be written as 700-11 So here a=700 and b=11 Using the formula, (700 – 11)2 = (7002 – 2 X 700 X 11 + 112) On simplifying we get (700 – 11)2 = (490000 – 15400 +121) (689)2 = 474721Read more on Sarthaks.com - https://www.sarthaks.com/729549/using-the-formula-a-b-2-a-2-2ab-b-2-evaluate-689-2?show=729562#a729562
Answered by
33
Given:
Using the formula (a-b)^2=(a^2-2ab+b^2), evaluate:
- 689²
Solution:
- 689².
Let 689² be (700 – 11)²
Also Let,
- a = 700
- b = 11
- Hence, 689² = 474721
________________________________________
Algebric identities:
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² – 2ab + b²
- a² – b² = (a + b) (a – b)
- (a + b)³ = a³ + 3a²b + 3ab² + b³
- (a – b)³ = a³ – 3a²b + 3ab² + b³
- a³ + b³ = (a + b)(a² – ab + b²)
- a³ – b³ = (a – b) (a² + ab + b²)
Similar questions