Math, asked by AnshuRaj92muz, 9 months ago

Using the formula for squaring a binomial evaluate the following
(69)2

Answers

Answered by Glorious31
364

\tt{ {(69)}^{2} can \: be \: written \: as :}

\tt{ {(60+9)}^{2}}

If we carefully observe ; the new value which we have got i.e. the binomial is in the form of \tt{ {(a+b)}^{2}}

So , we will use the same identity to solve the given problem.

\tt{ {(a+b)}^{2} = {a}^{2} + 2ab + {b}^{2}}

After putting up the values of a and b as:

a = 60

b = 9

We get :

\tt{ {(60+9)}^{2} = {(60)}^{2} + 2 \times 60 \times 9+ {(9)}^{2}}

\longrightarrow{\tt{ {(60+9)}^{2} = 3600 + 1080+ 81}}

\large{\boxed{\implies{\tt{ {(69)}^{2} = 4761}}}}

Verification :

\tt{ \sqrt{4761} \implies 69}

Answered by Anonymous
872

 \tt (69) ^{2}  \: can \: be \: expressed \: as \: (70 - 1) ^{2}

 \tt Solving  \: the  \: above  \: using \:  the \:  formula \:  (a - b) ^{2}

As, in the above Question

 \bold a = 70 \\  \bold b = 1

Thus, solving on the Following Identity

 \rm (a  - b {)}^{2}  =  {a}^{2}   -  2ab  - +   {b}^{2}

(70 {)}^{2}   - 2 \times 70 \times 1 + (1 {)}^{2}

 \red{ \implies}  \tt 4900 - 140 + 1

\red{ \implies}  \tt4901 - 140

\red{ \implies}  \tt 4761

Important Identities

 \tt(a +  b{)}^{0}  = 1

 \tt(a + b {)}^{1}  = a + b

 \tt(a + b {)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

 \tt(a  -  b {)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}

 \tt {a}^{2}  -  {b}^{2} =  (a - b)(a +b )

 \tt{a}^{2}  +  {b}^{2}  = (a + b {)}^{2}  - 2ab

\tt{a}^{2} +  {b}^{2}  = (a - b {)}^{2}  + 2ab

\tt(a + b) ^{3}  =  {a}^{3}  + 3 {a}^{2} b + 3a {b}^{2}  +  {b}^{3}

\tt(a -  b {)}^{3}   =  {a}^{3}  - 3 {a}^{2} b  + 3a {b}^{2}  -  {b}^{3}

\tt  {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  - ab +  {b}^{2} )

\tt{a}^{3}  -  {b}^{3}  = (a - b)( {a}^{2}  + ab +  {b}^{2} )

\tt(a + b + c) ^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca

Similar questions