using the function f and g.find fog and g of.check whether fog=gof.
f(x)=x-6,g(x)=x2
Answers
Answered by
4
Answer:
fog (x)= 2x^2-4x -3
and g o f(x)=(2x-3(2x-5)
Step-by-step explanation:
f(x)=2x-3
g(x)=x^2-2x
f(g(x))=f(x^2-2x)=2(x^2-2x)-3
=2x^2-4x-3
f(g(x))=f(2x-3)^2-2(2x-3)
=(2x-3)(2x-3-2)
=(2x-3)(2x-5)
f o g(x) ≠ g o f(x)
Similar questions